Таблица F6.A-1.5 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=16 GF( 1 + 226 ) = GF( 1 + 264 ) = GF( F6 ) в (A-1)-арифметике, T–1 = 1/T 0'240. 0. 0. 0. 0. 0. 0. 0 = > 2^32 Результаты в (A-1)-арифметике в виде 65-битовых слов = ПСНВ+ mod F6, т.е. в диапазоне [ 0..+264] |
t |
(r)X[t] – вх.Сигнал |
(r)X[f]=ЧПФ((r)X[t]) |
(r)H[t] – вх.Сигнал |
(r)H[f]=ЧПФ((r)H[t]) |
(r)E[f]=(r)X[f]·(r)H[f] |
(r)E[t]=оЧПФ((r)E[f]) |
(r)G[t]=(r)E[t]/T mod F2 |
0 |
0' 0. 0. 0. 0. 0. 0. 0.191 |
0' 0. 0. 0. 0. 0. 0. 1.195 |
0' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 0. 0. 2 |
0' 0. 0. 0. 0. 0. 0. 5. 75 |
0' 0. 0. 0. 0. 0. 0. 11.255 |
0' 0. 0. 0. 0. 0. 0. 0.191 |
1 |
0' 0. 0. 0. 0. 0. 0. 0.127 |
0' 0. 0. 0. 0. 0.132.128.191 |
0' 0. 0. 0. 0. 0. 0. 0. 1 |
0' 0. 0. 0. 0. 0. 0. 2. 0 |
0' 0. 0. 0. 1. 9.134. 0.191 |
0' 0. 0. 0. 0. 0. 0. 31.255 |
0' 0. 0. 0. 0. 0. 0. 1.255 |
2 |
0' 0. 0. 0. 0. 0. 0. 0.131 |
0' 0. 0. 0.132. 0.128. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 2. 0. 0 |
0' 1. 8. 1.132. 2. 0. 0.191 |
0' 0. 0. 0. 0. 0. 0. 24. 63 |
0' 0. 0. 0. 0. 0. 0. 1.131 |
3 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0.132. 0. 0.128. 0. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 2. 0. 0. 0 |
0' 1.132. 0. 1.255.254.248.191 |
0' 0. 0. 0. 0. 0. 0. 16.127 |
0' 0. 0. 0. 0. 0. 0. 1. 7 |
4 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0.128. 0. 0. 0. 59 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 2. 0. 0. 0. 0 |
0' 0. 0. 0.247.255.255.255. 59 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
5 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0.127.255.255.124. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 2. 0. 0. 0. 0. 0 |
0'248. 1.255.255.254.124. 0.193 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
6 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0.127.255.124. 0. 0. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 2. 0. 0. 0. 0. 0. 0 |
0' 1.255.254.124. 1. 8. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
7 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'127.124. 0. 0. 0. 0. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 2. 0. 0. 0. 0. 0. 0. 0 |
0'254.125. 8. 0. 0. 0. 0.190 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
8 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 0. 0.195 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.255.255.255 |
0'255.255.255.255.255.255.255. 60 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
9 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0.131.128.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.255.254. 1 |
0'255.255.255.254.249.130. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
10 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0.131.255.128. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.254. 0. 1 |
0'254.248. 1.131.254. 0. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
11 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0.131.255.255.128. 0. 0.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.254. 0. 0. 1 |
0' 1.131.255.254. 0. 1. 8.191 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
12 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.128. 0. 0. 0. 60 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.254. 0. 0. 0. 1 |
0'255.255.255. 7.255.255.255. 60 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
13 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.127.255.255.124. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.254. 0. 0. 0. 0. 1 |
0' 7.253.255.255.254.124. 0.190 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
14 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.127.255.124. 0. 0. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.254. 0. 0. 0. 0. 0. 1 |
0'253.255.254.123.254.248. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
15 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'127.124. 0. 0. 0. 0. 0.192 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'254. 0. 0. 0. 0. 0. 0. 1 |
0'254.122.248. 0. 0. 0. 0.194 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |