Таблица F6.A-1.2 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=64 GF( 1 + 226 ) = GF( 1 + 264 ) = GF( F6 ) в (A-1)-арифметике, T-1 = 1/T < -2^32 Результаты в A-арифметике в ПСАНВ± mod F6, т.е. в диапазоне [263..+263] |
t |
(r)X[t] вх.Сигнал |
(r)X[f]= |
(r)H[t] вх.Сигнал |
(r)H[f]= |
(r)E[f]= |
(r)E[t]= |
(r)G[t]= |
0 | 2 | 18 | 1 | 3 | 54 | 128 | 2 |
1 | 15 | 78 | 2 | 9 | 702 | 1216 | 19 |
2 | 1 | 498 | 0 | 33 | 16434 | 1984 | 31 |
3 | 0 | 5058 | 0 | 129 | 652482 | 128 | 2 |
4 | 0 | 69378 | 0 | 513 | 35590914 | 0 | 0 |
5 | 0 | 1063938 | 0 | 2049 | > 2^31 | 0 | 0 |
6 | 0 | 16838658 | 0 | 8193 | > 2^32 | 0 | 0 |
7 | 0 | 268681218 | 0 | 32769 | > 2^32 | 0 | 0 |
8 | 0 | > 2^32 | 0 | 131073 | > 2^32 | 0 | 0 |
9 | 0 | > 2^32 | 0 | 524289 | > 2^32 | 0 | 0 |
10 | 0 | > 2^32 | 0 | 2097153 | > 2^32 | 0 | 0 |
11 | 0 | > 2^32 | 0 | 8388609 | > 2^32 | 0 | 0 |
12 | 0 | > 2^32 | 0 | 33554433 | > 2^32 | 0 | 0 |
13 | 0 | > 2^32 | 0 | 134217729 | > 2^32 | 0 | 0 |
14 | 0 | > 2^32 | 0 | 536870913 | > 2^32 | 0 | 0 |
15 | 0 | > 2^32 | 0 | > 2^31 | < -2^32 | 0 | 0 |
16 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
17 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
18 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
19 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
20 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
21 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
22 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
23 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
24 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
25 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
26 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
27 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
28 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
29 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
30 | 0 | < -2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
31 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
32 | 0 | -12 | 0 | -1 | 12 | 0 | 0 |
33 | 0 | -42 | 0 | -7 | 294 | 0 | 0 |
34 | 0 | 18 | 0 | -31 | -558 | 0 | 0 |
35 | 0 | 3138 | 0 | -127 | -398526 | 0 | 0 |
36 | 0 | 61698 | 0 | -511 | -31527678 | 0 | 0 |
37 | 0 | 1033218 | 0 | -2047 | -2114997246 | 0 | 0 |
38 | 0 | 16715778 | 0 | -8191 | < -2^32 | 0 | 0 |
39 | 0 | 268189698 | 0 | -32767 | < -2^32 | 0 | 0 |
40 | 0 | > 2^31 | 0 | -131071 | < -2^32 | 0 | 0 |
41 | 0 | > 2^32 | 0 | -524287 | < -2^32 | 0 | 0 |
42 | 0 | > 2^32 | 0 | -2097151 | < -2^32 | 0 | 0 |
43 | 0 | > 2^32 | 0 | -8388607 | > 2^32 | 0 | 0 |
44 | 0 | > 2^32 | 0 | -33554431 | > 2^32 | 0 | 0 |
45 | 0 | > 2^32 | 0 | -134217727 | > 2^32 | 0 | 0 |
46 | 0 | > 2^32 | 0 | -536870911 | > 2^32 | 0 | 0 |
47 | 0 | > 2^32 | 0 | -2147483647 | < -2^32 | 0 | 0 |
48 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
49 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
50 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
51 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
52 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
53 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
54 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
55 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
56 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
57 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
58 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
59 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
60 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
61 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
62 | 0 | > 2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
63 | 0 | > 2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |