Таблица F6.A-1.2 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=128 GF( 1 + 226 ) = GF( 1 + 264 ) = GF( F6 ) в (A-1)-арифметике, T-1 = 1/T < -2^32 Результаты в A-арифметике в ПСАНВ± mod F6, т.е. в диапазоне [263..+263] |
t |
(r)X[t] вх.Сигнал |
(r)X[f]= |
(r)H[t] вх.Сигнал |
(r)H[f]= |
(r)E[f]= |
(r)E[t]= |
(r)G[t]= |
0 | 2 | 18 | 1 | 3 | 54 | 256 | 2 |
1 | 15 | 36 | 2 | 5 | 180 | 2432 | 19 |
2 | 1 | 78 | 0 | 9 | 702 | 3968 | 31 |
3 | 0 | 186 | 0 | 17 | 3162 | 256 | 2 |
4 | 0 | 498 | 0 | 33 | 16434 | 0 | 0 |
5 | 0 | 1506 | 0 | 65 | 97890 | 0 | 0 |
6 | 0 | 5058 | 0 | 129 | 652482 | 0 | 0 |
7 | 0 | 18306 | 0 | 257 | 4704642 | 0 | 0 |
8 | 0 | 69378 | 0 | 513 | 35590914 | 0 | 0 |
9 | 0 | 269826 | 0 | 1025 | 276571650 | 0 | 0 |
10 | 0 | 1063938 | 0 | 2049 | > 2^31 | 0 | 0 |
11 | 0 | 4225026 | 0 | 4097 | > 2^32 | 0 | 0 |
12 | 0 | 16838658 | 0 | 8193 | > 2^32 | 0 | 0 |
13 | 0 | 67231746 | 0 | 16385 | > 2^32 | 0 | 0 |
14 | 0 | 268681218 | 0 | 32769 | > 2^32 | 0 | 0 |
15 | 0 | 1074233346 | 0 | 65537 | > 2^32 | 0 | 0 |
16 | 0 | > 2^32 | 0 | 131073 | > 2^32 | 0 | 0 |
17 | 0 | > 2^32 | 0 | 262145 | > 2^32 | 0 | 0 |
18 | 0 | > 2^32 | 0 | 524289 | > 2^32 | 0 | 0 |
19 | 0 | > 2^32 | 0 | 1048577 | > 2^32 | 0 | 0 |
20 | 0 | > 2^32 | 0 | 2097153 | > 2^32 | 0 | 0 |
21 | 0 | > 2^32 | 0 | 4194305 | > 2^32 | 0 | 0 |
22 | 0 | > 2^32 | 0 | 8388609 | > 2^32 | 0 | 0 |
23 | 0 | > 2^32 | 0 | 16777217 | > 2^32 | 0 | 0 |
24 | 0 | > 2^32 | 0 | 33554433 | > 2^32 | 0 | 0 |
25 | 0 | > 2^32 | 0 | 67108865 | > 2^32 | 0 | 0 |
26 | 0 | > 2^32 | 0 | 134217729 | > 2^32 | 0 | 0 |
27 | 0 | > 2^32 | 0 | 268435457 | > 2^32 | 0 | 0 |
28 | 0 | > 2^32 | 0 | 536870913 | > 2^32 | 0 | 0 |
29 | 0 | > 2^32 | 0 | 1073741825 | > 2^32 | 0 | 0 |
30 | 0 | > 2^32 | 0 | > 2^31 | < -2^32 | 0 | 0 |
31 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
32 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
33 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
34 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
35 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
36 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
37 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
38 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
39 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
40 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
41 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
42 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
43 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
44 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
45 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
46 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
47 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
48 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
49 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
50 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
51 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
52 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
53 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
54 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
55 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
56 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
57 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
58 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
59 | 0 | > 2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
60 | 0 | < -2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
61 | 0 | < -2^32 | 0 | > 2^32 | < -2^32 | 0 | 0 |
62 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
63 | 0 | > 2^32 | 0 | 0 | 0 | 0 | 0 |
64 | 0 | -12 | 0 | -1 | 12 | 0 | 0 |
65 | 0 | -24 | 0 | -3 | 72 | 0 | 0 |
66 | 0 | -42 | 0 | -7 | 294 | 0 | 0 |
67 | 0 | -54 | 0 | -15 | 810 | 0 | 0 |
68 | 0 | 18 | 0 | -31 | -558 | 0 | 0 |
69 | 0 | 546 | 0 | -63 | -34398 | 0 | 0 |
70 | 0 | 3138 | 0 | -127 | -398526 | 0 | 0 |
71 | 0 | 14466 | 0 | -255 | -3688830 | 0 | 0 |
72 | 0 | 61698 | 0 | -511 | -31527678 | 0 | 0 |
73 | 0 | 254466 | 0 | -1023 | -260318718 | 0 | 0 |
74 | 0 | 1033218 | 0 | -2047 | -2114997246 | 0 | 0 |
75 | 0 | 4163586 | 0 | -4095 | < -2^32 | 0 | 0 |
76 | 0 | 16715778 | 0 | -8191 | < -2^32 | 0 | 0 |
77 | 0 | 66985986 | 0 | -16383 | < -2^32 | 0 | 0 |
78 | 0 | 268189698 | 0 | -32767 | < -2^32 | 0 | 0 |
79 | 0 | 1073250306 | 0 | -65535 | < -2^32 | 0 | 0 |
80 | 0 | > 2^31 | 0 | -131071 | < -2^32 | 0 | 0 |
81 | 0 | > 2^32 | 0 | -262143 | < -2^32 | 0 | 0 |
82 | 0 | > 2^32 | 0 | -524287 | < -2^32 | 0 | 0 |
83 | 0 | > 2^32 | 0 | -1048575 | < -2^32 | 0 | 0 |
84 | 0 | > 2^32 | 0 | -2097151 | < -2^32 | 0 | 0 |
85 | 0 | > 2^32 | 0 | -4194303 | > 2^32 | 0 | 0 |
86 | 0 | > 2^32 | 0 | -8388607 | > 2^32 | 0 | 0 |
87 | 0 | > 2^32 | 0 | -16777215 | > 2^32 | 0 | 0 |
88 | 0 | > 2^32 | 0 | -33554431 | > 2^32 | 0 | 0 |
89 | 0 | > 2^32 | 0 | -67108863 | > 2^32 | 0 | 0 |
90 | 0 | > 2^32 | 0 | -134217727 | > 2^32 | 0 | 0 |
91 | 0 | > 2^32 | 0 | -268435455 | > 2^32 | 0 | 0 |
92 | 0 | > 2^32 | 0 | -536870911 | > 2^32 | 0 | 0 |
93 | 0 | > 2^32 | 0 | -1073741823 | > 2^32 | 0 | 0 |
94 | 0 | > 2^32 | 0 | -2147483647 | < -2^32 | 0 | 0 |
95 | 0 | > 2^32 | 0 | < -2^31 | < -2^32 | 0 | 0 |
96 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
97 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
98 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
99 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
100 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
101 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
102 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
103 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
104 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
105 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
106 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
107 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
108 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
109 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
110 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
111 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
112 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
113 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
114 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
115 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
116 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
117 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
118 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
119 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
120 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
121 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
122 | 0 | < -2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
123 | 0 | < -2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
124 | 0 | > 2^32 | 0 | < -2^32 | < -2^32 | 0 | 0 |
125 | 0 | > 2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
126 | 0 | > 2^32 | 0 | < -2^32 | > 2^32 | 0 | 0 |
127 | 0 | > 2^32 | 0 | 2 | < -2^32 | 0 | 0 |