Таблица F6.A-1.5 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=16 GF( 1 + 226 ) = GF( 1 + 264 ) = GF( F6 ) в (A-1)-арифметике, T–1 = 1/T 0'240. 0. 0. 0. 0. 0. 0. 0 = > 2^32 Результаты в (A-1)-арифметике в виде 65-битовых слов = ПСНВ+ mod F6, т.е. в диапазоне [ 0..+264] |
t |
(r)X[t] – вх.Сигнал |
(r)X[f]=ЧПФ((r)X[t]) |
(r)H[t] – вх.Сигнал |
(r)H[f]=ЧПФ((r)H[t]) |
(r)E[f]=(r)X[f]·(r)H[f] |
(r)E[t]=оЧПФ((r)E[f]) |
(r)G[t]=(r)E[t]/T mod F2 |
0 |
0' 0. 0. 0. 0. 0. 0. 0. 1 |
0' 0. 0. 0. 0. 0. 0. 0. 17 |
0' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 0. 0. 2 |
0' 0. 0. 0. 0. 0. 0. 0. 53 |
0' 0. 0. 0. 0. 0. 0. 0. 31 |
0' 0. 0. 0. 0. 0. 0. 0. 1 |
1 |
0' 0. 0. 0. 0. 0. 0. 0. 14 |
0' 0. 0. 0. 0. 0. 1. 15. 1 |
0' 0. 0. 0. 0. 0. 0. 0. 1 |
0' 0. 0. 0. 0. 0. 0. 2. 0 |
0' 0. 0. 0. 0. 2. 31. 19. 1 |
0' 0. 0. 0. 0. 0. 0. 1. 47 |
0' 0. 0. 0. 0. 0. 0. 0. 18 |
2 |
0' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 1. 0. 15. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 2. 0. 0 |
0' 0. 2. 0. 31. 0. 19. 0. 1 |
0' 0. 0. 0. 0. 0. 0. 1.239 |
0' 0. 0. 0. 0. 0. 0. 0. 30 |
3 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 1. 0. 0. 15. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 2. 0. 0. 0 |
0' 0. 31. 0. 0. 18.255.254. 1 |
0' 0. 0. 0. 0. 0. 0. 0. 31 |
0' 0. 0. 0. 0. 0. 0. 0. 1 |
4 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 15. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 2. 0. 0. 0. 0 |
0' 0. 0. 0. 16.255.255.255.226 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
5 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 14.255.255.255. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 2. 0. 0. 0. 0. 0 |
0'254. 0. 18.255.255.225. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
6 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 14.255.255. 0. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 2. 0. 0. 0. 0. 0. 0 |
0' 0. 18.255.225. 0. 2. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
7 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 14.255. 0. 0. 0. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 2. 0. 0. 0. 0. 0. 0. 0 |
0' 18.225. 2. 0. 0. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
8 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.255.255.244 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.255.255.255 |
0' 0. 0. 0. 0. 0. 0. 0. 11 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
9 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0. 0. 0.241. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.255.254. 1 |
0'255.255.255.255.254. 30.237. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
10 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0. 0. 0.255.241. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.255.254. 0. 1 |
0'255.254. 0. 30.255.237. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
11 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0' 0. 0.255.255.241. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.255.254. 0. 0. 1 |
0' 0. 30.255.255.237. 0. 2. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
12 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.241. 0. 0. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.255.254. 0. 0. 0. 1 |
0'255.255.255.238.255.255.255.227 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
13 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.240.255.255.255. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.255.254. 0. 0. 0. 0. 1 |
0' 1.255.236.255.255.225. 0. 1 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
14 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.240.255.255. 0. 0. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'255.254. 0. 0. 0. 0. 0. 1 |
0'255.236.255.224.255.254. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
15 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'240.255. 0. 0. 0. 0. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
0'254. 0. 0. 0. 0. 0. 0. 1 |
0'236.224.254. 0. 0. 0. 0. 2 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |
1' 0. 0. 0. 0. 0. 0. 0. 0 |