|
Таблица F6.A-1.1. Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=128 GF( 1 + 226 ) = GF( 1 + 264 ) = GF( F6 ) в (A-1)-арифметике, T–1 = 1/T > 2^32 Результаты в A-арифметике в ПСНВ+ mod F6, т.е. в диапазоне [ 0..+264] |
| t |
(r)X[t] вх.Сигнал |
(r)X[f]= |
(r)H[t] вх.Сигнал |
(r)H[f]= |
(r)E[f]= |
(r)E[t]= |
(r)G[t]= (r)E[t]/T mod F2 |
| 0 | 2 | 18 | 1 | 3 | 54 | 256 | 2 |
| 1 | 15 | 36 | 2 | 5 | 180 | 2432 | 19 |
| 2 | 1 | 78 | 0 | 9 | 702 | 3968 | 31 |
| 3 | 0 | 186 | 0 | 17 | 3162 | 256 | 2 |
| 4 | 0 | 498 | 0 | 33 | 16434 | 0 | 0 |
| 5 | 0 | 1506 | 0 | 65 | 97890 | 0 | 0 |
| 6 | 0 | 5058 | 0 | 129 | 652482 | 0 | 0 |
| 7 | 0 | 18306 | 0 | 257 | 4704642 | 0 | 0 |
| 8 | 0 | 69378 | 0 | 513 | 35590914 | 0 | 0 |
| 9 | 0 | 269826 | 0 | 1025 | 276571650 | 0 | 0 |
| 10 | 0 | 1063938 | 0 | 2049 | 2180008962 | 0 | 0 |
| 11 | 0 | 4225026 | 0 | 4097 | > 2^32 | 0 | 0 |
| 12 | 0 | 16838658 | 0 | 8193 | > 2^32 | 0 | 0 |
| 13 | 0 | 67231746 | 0 | 16385 | > 2^32 | 0 | 0 |
| 14 | 0 | 268681218 | 0 | 32769 | > 2^32 | 0 | 0 |
| 15 | 0 | 1074233346 | 0 | 65537 | > 2^32 | 0 | 0 |
| 16 | 0 | > 2^32 | 0 | 131073 | > 2^32 | 0 | 0 |
| 17 | 0 | > 2^32 | 0 | 262145 | > 2^32 | 0 | 0 |
| 18 | 0 | > 2^32 | 0 | 524289 | > 2^32 | 0 | 0 |
| 19 | 0 | > 2^32 | 0 | 1048577 | > 2^32 | 0 | 0 |
| 20 | 0 | > 2^32 | 0 | 2097153 | > 2^32 | 0 | 0 |
| 21 | 0 | > 2^32 | 0 | 4194305 | > 2^32 | 0 | 0 |
| 22 | 0 | > 2^32 | 0 | 8388609 | > 2^32 | 0 | 0 |
| 23 | 0 | > 2^32 | 0 | 16777217 | > 2^32 | 0 | 0 |
| 24 | 0 | > 2^32 | 0 | 33554433 | > 2^32 | 0 | 0 |
| 25 | 0 | > 2^32 | 0 | 67108865 | > 2^32 | 0 | 0 |
| 26 | 0 | > 2^32 | 0 | 134217729 | > 2^32 | 0 | 0 |
| 27 | 0 | > 2^32 | 0 | 268435457 | > 2^32 | 0 | 0 |
| 28 | 0 | > 2^32 | 0 | 536870913 | > 2^32 | 0 | 0 |
| 29 | 0 | > 2^32 | 0 | 1073741825 | > 2^32 | 0 | 0 |
| 30 | 0 | > 2^32 | 0 | 2147483649 | > 2^32 | 0 | 0 |
| 31 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 32 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 33 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 34 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 35 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 36 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 37 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 38 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 39 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 40 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 41 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 42 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 43 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 44 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 45 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 46 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 47 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 48 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 49 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 50 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 51 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 52 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 53 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 54 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 55 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 56 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 57 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 58 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 59 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 60 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 61 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 62 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 63 | 0 | > 2^32 | 0 | 0 | 0 | 0 | 0 |
| 64 | 0 | > 2^32 | 0 | 2^64 | 12 | 0 | 0 |
| 65 | 0 | > 2^32 | 0 | > 2^32 | 72 | 0 | 0 |
| 66 | 0 | > 2^32 | 0 | > 2^32 | 294 | 0 | 0 |
| 67 | 0 | > 2^32 | 0 | > 2^32 | 810 | 0 | 0 |
| 68 | 0 | 18 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 69 | 0 | 546 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 70 | 0 | 3138 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 71 | 0 | 14466 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 72 | 0 | 61698 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 73 | 0 | 254466 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 74 | 0 | 1033218 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 75 | 0 | 4163586 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 76 | 0 | 16715778 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 77 | 0 | 66985986 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 78 | 0 | 268189698 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 79 | 0 | 1073250306 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 80 | 0 | 4293984258 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 81 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 82 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 83 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 84 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 85 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 86 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 87 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 88 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 89 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 90 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 91 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 92 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 93 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 94 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 95 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 96 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 97 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 98 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 99 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 100 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 101 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 102 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 103 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 104 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 105 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 106 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 107 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 108 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 109 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 110 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 111 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 112 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 113 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 114 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 115 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 116 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 117 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 118 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 119 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 120 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 121 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 122 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 123 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 124 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 125 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 126 | 0 | > 2^32 | 0 | > 2^32 | > 2^32 | 0 | 0 |
| 127 | 0 | > 2^32 | 0 | 2 | > 2^32 | 0 | 0 |