Таблица F5.A-1.4 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=32 GF( 1 + 225 ) = GF( 1 + 232 ) = GF( F5 ) в (A-1)-арифметике, T–1 = 1/T = - 8. 0. 0. 1 Результаты в A-арифметике в 33-битовых числах = ПСАНВ± mod F5, т.е. в диапазоне [231..+231] |
t |
(r)X[t] – вх.Сигнал |
(r)X[f]=ЧПФ((r)X[t]) |
(r)H[t] – вх.Сигнал |
(r)H[f]=ЧПФ((r)H[t]) |
(r)E[f]=(r)X[f]·(r)H[f] |
(r)E[t]=оЧПФ((r)E[f]) |
(r)G[t]=(r)E[t]/T mod F2 |
0 |
+ 0. 0. 0. 2 |
+ 0. 0. 0. 18 |
+ 0. 0. 0. 1 |
+ 0. 0. 0. 3 |
+ 0. 0. 0. 54 |
+ 0. 0. 0. 64 |
+ 0. 0. 0. 2 |
1 |
+ 0. 0. 0. 15 |
+ 0. 0. 0. 78 |
+ 0. 0. 0. 2 |
+ 0. 0. 0. 9 |
+ 0. 0. 2.190 |
+ 0. 0. 2. 96 |
+ 0. 0. 0. 19 |
2 |
+ 0. 0. 0. 1 |
+ 0. 0. 1.242 |
0. 0. 0. 0 |
+ 0. 0. 0. 33 |
+ 0. 0. 64. 50 |
+ 0. 0. 3.224 |
+ 0. 0. 0. 31 |
3 |
0. 0. 0. 0 |
+ 0. 0. 19.194 |
0. 0. 0. 0 |
+ 0. 0. 0.129 |
+ 0. 9.244.194 |
+ 0. 0. 0. 64 |
+ 0. 0. 0. 2 |
4 |
0. 0. 0. 0 |
+ 0. 1. 15. 2 |
0. 0. 0. 0 |
+ 0. 0. 2. 1 |
+ 2. 31. 19. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
5 |
0. 0. 0. 0 |
+ 0. 16. 60. 2 |
0. 0. 0. 0 |
+ 0. 0. 8. 1 |
-126. 15.180. 0 |
0. 0. 0. 0 |
0. 0. 0. 0 |
6 |
0. 0. 0. 0 |
+ 1. 0.240. 2 |
0. 0. 0. 0 |
+ 0. 0. 32. 1 |
+ 31. 1. 47.226 |
0. 0. 0. 0 |
0. 0. 0. 0 |
7 |
0. 0. 0. 0 |
+ 16. 3.192. 2 |
0. 0. 0. 0 |
+ 0. 0.128. 1 |
- 15.251. 72. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
8 |
0. 0. 0. 0 |
+ 0. 15. 0. 1 |
0. 0. 0. 0 |
+ 0. 2. 0. 1 |
+ 0. 16.255.227 |
0. 0. 0. 0 |
0. 0. 0. 0 |
9 |
0. 0. 0. 0 |
+ 0. 59.255.242 |
0. 0. 0. 0 |
+ 0. 8. 0. 1 |
- 0. 52. 1.239 |
0. 0. 0. 0 |
0. 0. 0. 0 |
10 |
0. 0. 0. 0 |
+ 0.239.255. 2 |
0. 0. 0. 0 |
+ 0. 32. 0. 1 |
- 30.208. 30.255 |
0. 0. 0. 0 |
0. 0. 0. 0 |
11 |
0. 0. 0. 0 |
+ 3.191.240. 2 |
0. 0. 0. 0 |
+ 0.128. 0. 1 |
+ 4.190. 16. 10 |
0. 0. 0. 0 |
0. 0. 0. 0 |
12 |
0. 0. 0. 0 |
+ 14.255. 0. 2 |
0. 0. 0. 0 |
+ 2. 0. 0. 1 |
+ 18.225. 2. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
13 |
0. 0. 0. 0 |
+ 59.240. 0. 2 |
0. 0. 0. 0 |
+ 8. 0. 0. 1 |
+ 74. 16.128. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
14 |
0. 0. 0. 0 |
- 17. 0. 0. 0 |
0. 0. 0. 0 |
+ 32. 0. 0. 1 |
+ 17. 32. 0. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
15 |
0. 0. 0. 0 |
- 80. 0. 0. 3 |
0. 0. 0. 0 |
-128. 0. 0. 1 |
- 40. 0. 0. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
16 |
0. 0. 0. 0 |
- 0. 0. 0. 13 |
0. 0. 0. 0 |
- 0. 0. 0. 2 |
+ 0. 0. 0. 12 |
0. 0. 0. 0 |
0. 0. 0. 0 |
17 |
0. 0. 0. 0 |
- 0. 0. 0. 43 |
0. 0. 0. 0 |
- 0. 0. 0. 8 |
+ 0. 0. 1. 38 |
0. 0. 0. 0 |
0. 0. 0. 0 |
18 |
0. 0. 0. 0 |
+ 0. 0. 0. 18 |
0. 0. 0. 0 |
- 0. 0. 0. 32 |
- 0. 0. 2. 47 |
0. 0. 0. 0 |
0. 0. 0. 0 |
19 |
0. 0. 0. 0 |
+ 0. 0. 12. 66 |
0. 0. 0. 0 |
- 0. 0. 0.128 |
- 0. 6. 20.191 |
0. 0. 0. 0 |
0. 0. 0. 0 |
20 |
0. 0. 0. 0 |
+ 0. 0.241. 2 |
0. 0. 0. 0 |
- 0. 0. 2. 0 |
- 1.225. 18.255 |
0. 0. 0. 0 |
0. 0. 0. 0 |
21 |
0. 0. 0. 0 |
+ 0. 15.196. 2 |
0. 0. 0. 0 |
- 0. 0. 8. 0 |
-126. 16. 75.255 |
0. 0. 0. 0 |
0. 0. 0. 0 |
22 |
0. 0. 0. 0 |
+ 0.255. 16. 2 |
0. 0. 0. 0 |
- 0. 0. 32. 0 |
+ 30.254.208. 34 |
0. 0. 0. 0 |
0. 0. 0. 0 |
23 |
0. 0. 0. 0 |
+ 15.252. 64. 2 |
0. 0. 0. 0 |
- 0. 0.128. 0 |
- 16. 4.184. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
24 |
0. 0. 0. 0 |
- 0. 15. 0. 0 |
0. 0. 0. 0 |
- 0. 2. 0. 0 |
- 0. 17. 0. 30 |
0. 0. 0. 0 |
0. 0. 0. 0 |
25 |
0. 0. 0. 0 |
- 0. 60. 0. 15 |
0. 0. 0. 0 |
- 0. 8. 0. 0 |
+ 0. 51.254. 18 |
0. 0. 0. 0 |
0. 0. 0. 0 |
26 |
0. 0. 0. 0 |
- 0.240. 0.255 |
0. 0. 0. 0 |
- 0. 32. 0. 0 |
+ 30.207.225. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
27 |
0. 0. 0. 0 |
- 3.192. 15.255 |
0. 0. 0. 0 |
- 0.128. 0. 0 |
- 4.193.240. 7 |
0. 0. 0. 0 |
0. 0. 0. 0 |
28 |
0. 0. 0. 0 |
- 15. 0.255.255 |
0. 0. 0. 0 |
- 2. 0. 0. 0 |
- 19. 31. 1.255 |
0. 0. 0. 0 |
0. 0. 0. 0 |
29 |
0. 0. 0. 0 |
- 60. 15.255.255 |
0. 0. 0. 0 |
- 8. 0. 0. 0 |
- 77.240.127.255 |
0. 0. 0. 0 |
0. 0. 0. 0 |
30 |
0. 0. 0. 0 |
+ 15. 0. 0. 3 |
0. 0. 0. 0 |
- 32. 0. 0. 0 |
- 79. 31.255.254 |
0. 0. 0. 0 |
0. 0. 0. 0 |
31 |
0. 0. 0. 0 |
+ 48. 0. 0. 6 |
0. 0. 0. 0 |
-128. 0. 0. 0 |
+ 72. 0. 0. 9 |
0. 0. 0. 0 |
0. 0. 0. 0 |