Таблица F5.A-1.3 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=32 GF( 1 + 225 ) = GF( 1 + 232 ) = GF( F5 ) в (A-1)-арифметике, T–1 = 1/T = 248. 0. 0. 1 Результаты в A-арифметике в 33-битовых числах = ПСНВ+ mod F5, т.е. в диапазоне [ 0..+232] |
t |
(r)X[t] – вх.Сигнал |
(r)X[f]=ЧПФ((r)X[t]) |
(r)H[t] – вх.Сигнал |
(r)H[f]=ЧПФ((r)H[t]) |
(r)E[f]=(r)X[f]·(r)H[f] |
(r)E[t]=оЧПФ((r)E[f]) |
(r)G[t]=(r)E[t]/T mod F2 |
0 |
0. 0. 0. 2 |
0. 0. 0. 18 |
0. 0. 0. 1 |
0. 0. 0. 3 |
0. 0. 0. 54 |
0. 0. 0. 64 |
0. 0. 0. 2 |
1 |
0. 0. 0. 15 |
0. 0. 0. 78 |
0. 0. 0. 2 |
0. 0. 0. 9 |
0. 0. 2.190 |
0. 0. 2. 96 |
0. 0. 0. 19 |
2 |
0. 0. 0. 1 |
0. 0. 1.242 |
0. 0. 0. 0 |
0. 0. 0. 33 |
0. 0. 64. 50 |
0. 0. 3.224 |
0. 0. 0. 31 |
3 |
0. 0. 0. 0 |
0. 0. 19.194 |
0. 0. 0. 0 |
0. 0. 0.129 |
0. 9.244.194 |
0. 0. 0. 64 |
0. 0. 0. 2 |
4 |
0. 0. 0. 0 |
0. 1. 15. 2 |
0. 0. 0. 0 |
0. 0. 2. 1 |
2. 31. 19. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
5 |
0. 0. 0. 0 |
0. 16. 60. 2 |
0. 0. 0. 0 |
0. 0. 8. 1 |
129.240. 76. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
6 |
0. 0. 0. 0 |
1. 0.240. 2 |
0. 0. 0. 0 |
0. 0. 32. 1 |
31. 1. 47.226 |
0. 0. 0. 0 |
0. 0. 0. 0 |
7 |
0. 0. 0. 0 |
16. 3.192. 2 |
0. 0. 0. 0 |
0. 0.128. 1 |
240. 4.184. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
8 |
0. 0. 0. 0 |
0. 15. 0. 1 |
0. 0. 0. 0 |
0. 2. 0. 1 |
0. 16.255.227 |
0. 0. 0. 0 |
0. 0. 0. 0 |
9 |
0. 0. 0. 0 |
0. 59.255.242 |
0. 0. 0. 0 |
0. 8. 0. 1 |
255.203.254. 19 |
0. 0. 0. 0 |
0. 0. 0. 0 |
10 |
0. 0. 0. 0 |
0.239.255. 2 |
0. 0. 0. 0 |
0. 32. 0. 1 |
225. 47.225. 3 |
0. 0. 0. 0 |
0. 0. 0. 0 |
11 |
0. 0. 0. 0 |
3.191.240. 2 |
0. 0. 0. 0 |
0.128. 0. 1 |
4.190. 16. 10 |
0. 0. 0. 0 |
0. 0. 0. 0 |
12 |
0. 0. 0. 0 |
14.255. 0. 2 |
0. 0. 0. 0 |
2. 0. 0. 1 |
18.225. 2. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
13 |
0. 0. 0. 0 |
59.240. 0. 2 |
0. 0. 0. 0 |
8. 0. 0. 1 |
74. 16.128. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
14 |
0. 0. 0. 0 |
239. 0. 0. 2 |
0. 0. 0. 0 |
32. 0. 0. 1 |
17. 32. 0. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
15 |
0. 0. 0. 0 |
175.255.255.255 |
0. 0. 0. 0 |
128. 0. 0. 1 |
216. 0. 0. 0 |
0. 0. 0. 0 |
0. 0. 0. 0 |
16 |
0. 0. 0. 0 |
255.255.255.245 |
0. 0. 0. 0 |
2^32 |
0. 0. 0. 12 |
0. 0. 0. 0 |
0. 0. 0. 0 |
17 |
0. 0. 0. 0 |
255.255.255.215 |
0. 0. 0. 0 |
255.255.255.250 |
0. 0. 1. 38 |
0. 0. 0. 0 |
0. 0. 0. 0 |
18 |
0. 0. 0. 0 |
0. 0. 0. 18 |
0. 0. 0. 0 |
255.255.255.226 |
255.255.253.211 |
0. 0. 0. 0 |
0. 0. 0. 0 |
19 |
0. 0. 0. 0 |
0. 0. 12. 66 |
0. 0. 0. 0 |
255.255.255.130 |
255.249.235. 67 |
0. 0. 0. 0 |
0. 0. 0. 0 |
20 |
0. 0. 0. 0 |
0. 0.241. 2 |
0. 0. 0. 0 |
255.255.254. 2 |
254. 30.237. 3 |
0. 0. 0. 0 |
0. 0. 0. 0 |
21 |
0. 0. 0. 0 |
0. 15.196. 2 |
0. 0. 0. 0 |
255.255.248. 2 |
129.239.180. 3 |
0. 0. 0. 0 |
0. 0. 0. 0 |
22 |
0. 0. 0. 0 |
0.255. 16. 2 |
0. 0. 0. 0 |
255.255.224. 2 |
30.254.208. 34 |
0. 0. 0. 0 |
0. 0. 0. 0 |
23 |
0. 0. 0. 0 |
15.252. 64. 2 |
0. 0. 0. 0 |
255.255.128. 2 |
239.251. 72. 1 |
0. 0. 0. 0 |
0. 0. 0. 0 |
24 |
0. 0. 0. 0 |
255.241. 0. 2 |
0. 0. 0. 0 |
255.254. 0. 2 |
255.238.255.228 |
0. 0. 0. 0 |
0. 0. 0. 0 |
25 |
0. 0. 0. 0 |
255.195.255.243 |
0. 0. 0. 0 |
255.248. 0. 2 |
0. 51.254. 18 |
0. 0. 0. 0 |
0. 0. 0. 0 |
26 |
0. 0. 0. 0 |
255. 15.255. 3 |
0. 0. 0. 0 |
255.224. 0. 2 |
30.207.225. 2 |
0. 0. 0. 0 |
0. 0. 0. 0 |
27 |
0. 0. 0. 0 |
252. 63.240. 3 |
0. 0. 0. 0 |
255.128. 0. 2 |
251. 62. 15.251 |
0. 0. 0. 0 |
0. 0. 0. 0 |
28 |
0. 0. 0. 0 |
240.255. 0. 3 |
0. 0. 0. 0 |
254. 0. 0. 2 |
236.224.254. 3 |
0. 0. 0. 0 |
0. 0. 0. 0 |
29 |
0. 0. 0. 0 |
195.240. 0. 3 |
0. 0. 0. 0 |
248. 0. 0. 2 |
178. 15.128. 3 |
0. 0. 0. 0 |
0. 0. 0. 0 |
30 |
0. 0. 0. 0 |
15. 0. 0. 3 |
0. 0. 0. 0 |
224. 0. 0. 2 |
176.224. 0. 4 |
0. 0. 0. 0 |
0. 0. 0. 0 |
31 |
0. 0. 0. 0 |
48. 0. 0. 6 |
0. 0. 0. 0 |
128. 0. 0. 2 |
72. 0. 0. 9 |
0. 0. 0. 0 |
0. 0. 0. 0 |