Таблица F4.A-1.1. Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=64 GF( 1 + 224 ) = GF( 1 + 216 ) = GF( F4 ) в (A-1)-арифметике, T–1 = 1/T = 64513 Результаты в A-арифметике в ПСНВ+ mod F4, т.е. в диапазоне [ 0..+65536] |
t |
(r)X[t] вх.Сигнал |
(r)X[f]= ЧПФ((r)X[t]) |
(r)H[t] вх.Сигнал |
(r)H[f]= ЧПФ((r)H[t]) |
(r)E[f]= (r)X[f]·(r)H[f] |
(r)E[t]= оЧПФ((r)E[f]) |
(r)G[t]= (r)E[t]/T mod F2 |
0 | 2 | 18 | 1 | 3 | 54 | 128 | 2 |
1 | 15 | 61204 | 2 | 8161 | 28367 | 1216 | 19 |
2 | 1 | 36 | 0 | 5 | 180 | 1984 | 31 |
3 | 0 | 56873 | 0 | 16321 | 23702 | 128 | 2 |
4 | 0 | 78 | 0 | 9 | 702 | 0 | 0 |
5 | 0 | 48223 | 0 | 32641 | 44814 | 0 | 0 |
6 | 0 | 186 | 0 | 17 | 3162 | 0 | 0 |
7 | 0 | 30971 | 0 | 65281 | 1401 | 0 | 0 |
8 | 0 | 498 | 0 | 33 | 16434 | 0 | 0 |
9 | 0 | 62196 | 0 | 65024 | 9971 | 0 | 0 |
10 | 0 | 1506 | 0 | 65 | 32353 | 0 | 0 |
11 | 0 | 59877 | 0 | 64510 | 45564 | 0 | 0 |
12 | 0 | 5058 | 0 | 129 | 62649 | 0 | 0 |
13 | 0 | 58311 | 0 | 63482 | 38068 | 0 | 0 |
14 | 0 | 18306 | 0 | 257 | 51515 | 0 | 0 |
15 | 0 | 1930 | 0 | 61426 | 61284 | 0 | 0 |
16 | 0 | 3841 | 0 | 513 | 4323 | 0 | 0 |
17 | 0 | 3857 | 0 | 57314 | 3797 | 0 | 0 |
18 | 0 | 7678 | 0 | 1025 | 5510 | 0 | 0 |
19 | 0 | 7708 | 0 | 49090 | 40619 | 0 | 0 |
20 | 0 | 15346 | 0 | 2049 | 51731 | 0 | 0 |
21 | 0 | 15398 | 0 | 32642 | 18263 | 0 | 0 |
22 | 0 | 30658 | 0 | 4097 | 36934 | 0 | 0 |
23 | 0 | 30730 | 0 | 65283 | 59020 | 0 | 0 |
24 | 0 | 61186 | 0 | 8193 | 4385 | 0 | 0 |
25 | 0 | 61202 | 0 | 65028 | 43794 | 0 | 0 |
26 | 0 | 56321 | 0 | 16385 | 58625 | 0 | 0 |
27 | 0 | 55841 | 0 | 64518 | 49674 | 0 | 0 |
28 | 0 | 45055 | 0 | 32769 | 55296 | 0 | 0 |
29 | 0 | 42047 | 0 | 63498 | 54100 | 0 | 0 |
30 | 0 | 16379 | 0 | 0 | 0 | 0 | 0 |
31 | 0 | 2171 | 0 | 61458 | 57523 | 0 | 0 |
32 | 0 | 65525 | 0 | 2^16 | 12 | 0 | 0 |
33 | 0 | 4341 | 0 | 57378 | 37298 | 0 | 0 |
34 | 0 | 65513 | 0 | 65534 | 72 | 0 | 0 |
35 | 0 | 8684 | 0 | 49218 | 42335 | 0 | 0 |
36 | 0 | 65495 | 0 | 65530 | 294 | 0 | 0 |
37 | 0 | 17382 | 0 | 32898 | 22711 | 0 | 0 |
38 | 0 | 65483 | 0 | 65522 | 810 | 0 | 0 |
39 | 0 | 34826 | 0 | 258 | 6539 | 0 | 0 |
40 | 0 | 18 | 0 | 65506 | 64979 | 0 | 0 |
41 | 0 | 4369 | 0 | 515 | 21777 | 0 | 0 |
42 | 0 | 546 | 0 | 65474 | 31139 | 0 | 0 |
43 | 0 | 9760 | 0 | 1029 | 15879 | 0 | 0 |
44 | 0 | 3138 | 0 | 65410 | 60233 | 0 | 0 |
45 | 0 | 23614 | 0 | 2057 | 11081 | 0 | 0 |
46 | 0 | 14466 | 0 | 65282 | 46779 | 0 | 0 |
47 | 0 | 63610 | 0 | 4113 | 4226 | 0 | 0 |
48 | 0 | 61698 | 0 | 65026 | 61156 | 0 | 0 |
49 | 0 | 61680 | 0 | 8225 | 61620 | 0 | 0 |
50 | 0 | 57855 | 0 | 64514 | 59783 | 0 | 0 |
51 | 0 | 57817 | 0 | 16449 | 24426 | 0 | 0 |
52 | 0 | 50163 | 0 | 63490 | 12818 | 0 | 0 |
53 | 0 | 50079 | 0 | 32897 | 45294 | 0 | 0 |
54 | 0 | 34755 | 0 | 61442 | 24639 | 0 | 0 |
55 | 0 | 34555 | 0 | 256 | 64122 | 0 | 0 |
56 | 0 | 3843 | 0 | 57346 | 45284 | 0 | 0 |
57 | 0 | 3315 | 0 | 511 | 55540 | 0 | 0 |
58 | 0 | 7172 | 0 | 49154 | 8965 | 0 | 0 |
59 | 0 | 5604 | 0 | 1021 | 19965 | 0 | 0 |
60 | 0 | 12294 | 0 | 32770 | 18441 | 0 | 0 |
61 | 0 | 7110 | 0 | 2041 | 27833 | 0 | 0 |
62 | 0 | 16394 | 0 | 2 | 32788 | 0 | 0 |
63 | 0 | 63371 | 0 | 4081 | 8049 | 0 | 0 |