Таблица F4.A-1.4 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T=64 GF( 1 + 224 ) = GF( 1 + 216 ) = GF( F4 ) в (A-1)-арифметике, T–1 = 1/T = - 4. 1 Результаты в A-арифметике в 9-ти битовых числах = ПСАНВ± mod F4, т.е. в диапазоне [32768..+32768] |
t |
(r)X[t] вх.Сигнал |
(r)X[f]= ЧПФ((r)X[t]) |
(r)H[t] вх.Сигнал |
(r)H[f]= ЧПФ((r)H[t]) |
(r)E[f]= (r)X[f]·(r)H[f] |
(r)E[t]= оЧПФ((r)E[f]) |
(r)G[t]= (r)E[t]/T mod F2 |
0 | + 0. 2 | + 0. 18 | + 0. 1 | + 0. 3 | + 0. 54 | + 0.128 | + 0. 2 |
1 | + 0. 15 | - 16.238 | + 0. 2 | + 31.225 | +110.207 | + 4.192 | + 0. 19 |
2 | + 0. 1 | + 0. 36 | 0. 0 | + 0. 5 | + 0.180 | + 7.192 | + 0. 31 |
3 | 0. 0 | - 33.217 | 0. 0 | + 63.193 | + 92.150 | + 0.128 | + 0. 2 |
4 | 0. 0 | + 0. 78 | 0. 0 | + 0. 9 | + 2.190 | 0. 0 | 0. 0 |
5 | 0. 0 | - 67.163 | 0. 0 | +127.129 | - 80.244 | 0. 0 | 0. 0 |
6 | 0. 0 | + 0.186 | 0. 0 | + 0. 17 | + 12. 90 | 0. 0 | 0. 0 |
7 | 0. 0 | +120.251 | 0. 0 | - 1. 1 | + 5.121 | 0. 0 | 0. 0 |
8 | 0. 0 | + 1.242 | 0. 0 | + 0. 33 | + 64. 50 | 0. 0 | 0. 0 |
9 | 0. 0 | - 13. 14 | 0. 0 | - 2. 2 | + 38.243 | 0. 0 | 0. 0 |
10 | 0. 0 | + 5.226 | 0. 0 | + 0. 65 | +126. 97 | 0. 0 | 0. 0 |
11 | 0. 0 | - 22. 29 | 0. 0 | - 4. 4 | - 78. 6 | 0. 0 | 0. 0 |
12 | 0. 0 | + 19.194 | 0. 0 | + 0.129 | - 11. 73 | 0. 0 | 0. 0 |
13 | 0. 0 | - 28. 59 | 0. 0 | - 8. 8 | -107. 78 | 0. 0 | 0. 0 |
14 | 0. 0 | + 71.130 | 0. 0 | + 1. 1 | - 54.199 | 0. 0 | 0. 0 |
15 | 0. 0 | + 7.138 | 0. 0 | - 16. 16 | - 16.158 | 0. 0 | 0. 0 |
16 | 0. 0 | + 15. 1 | 0. 0 | + 2. 1 | + 16.227 | 0. 0 | 0. 0 |
17 | 0. 0 | + 15. 17 | 0. 0 | - 32. 32 | + 14.213 | 0. 0 | 0. 0 |
18 | 0. 0 | + 29.254 | 0. 0 | + 4. 1 | + 21.134 | 0. 0 | 0. 0 |
19 | 0. 0 | + 30. 28 | 0. 0 | - 64. 64 | - 97. 87 | 0. 0 | 0. 0 |
20 | 0. 0 | + 59.242 | 0. 0 | + 8. 1 | - 53.239 | 0. 0 | 0. 0 |
21 | 0. 0 | + 60. 38 | 0. 0 | +127.130 | + 71. 87 | 0. 0 | 0. 0 |
22 | 0. 0 | +119.194 | 0. 0 | + 16. 1 | -111.188 | 0. 0 | 0. 0 |
23 | 0. 0 | +120. 10 | 0. 0 | - 0.255 | - 25.118 | 0. 0 | 0. 0 |
24 | 0. 0 | - 17. 0 | 0. 0 | + 32. 1 | + 17. 33 | 0. 0 | 0. 0 |
25 | 0. 0 | - 16.240 | 0. 0 | - 1.254 | - 84.240 | 0. 0 | 0. 0 |
26 | 0. 0 | - 36. 1 | 0. 0 | + 64. 1 | - 27. 1 | 0. 0 | 0. 0 |
27 | 0. 0 | - 37.225 | 0. 0 | - 3.252 | - 61.248 | 0. 0 | 0. 0 |
28 | 0. 0 | - 80. 3 | 0. 0 | -128. 1 | - 40. 2 | 0. 0 | 0. 0 |
29 | 0. 0 | - 91.195 | 0. 0 | - 7.248 | - 44.174 | 0. 0 | 0. 0 |
30 | 0. 0 | + 63.251 | 0. 0 | 0. 0 | 0. 0 | 0. 0 | 0. 0 |
31 | 0. 0 | + 8.123 | 0. 0 | - 15.240 | - 31. 79 | 0. 0 | 0. 0 |
32 | 0. 0 | - 0. 13 | 0. 0 | - 0. 2 | + 0. 12 | 0. 0 | 0. 0 |
33 | 0. 0 | + 16.245 | 0. 0 | - 31.224 | -110. 80 | 0. 0 | 0. 0 |
34 | 0. 0 | - 0. 25 | 0. 0 | - 0. 4 | + 0. 72 | 0. 0 | 0. 0 |
35 | 0. 0 | + 33.236 | 0. 0 | - 63.192 | - 90.163 | 0. 0 | 0. 0 |
36 | 0. 0 | - 0. 43 | 0. 0 | - 0. 8 | + 1. 38 | 0. 0 | 0. 0 |
37 | 0. 0 | + 67.230 | 0. 0 | -127.128 | + 88.183 | 0. 0 | 0. 0 |
38 | 0. 0 | - 0. 55 | 0. 0 | - 0. 16 | + 3. 42 | 0. 0 | 0. 0 |
39 | 0. 0 | -119.248 | 0. 0 | + 1. 2 | + 25.139 | 0. 0 | 0. 0 |
40 | 0. 0 | + 0. 18 | 0. 0 | - 0. 32 | - 2. 47 | 0. 0 | 0. 0 |
41 | 0. 0 | + 17. 17 | 0. 0 | + 2. 3 | + 85. 17 | 0. 0 | 0. 0 |
42 | 0. 0 | + 2. 34 | 0. 0 | - 0. 64 | +121.163 | 0. 0 | 0. 0 |
43 | 0. 0 | + 38. 32 | 0. 0 | + 4. 5 | + 62. 7 | 0. 0 | 0. 0 |
44 | 0. 0 | + 12. 66 | 0. 0 | - 0.128 | - 20.185 | 0. 0 | 0. 0 |
45 | 0. 0 | + 92. 62 | 0. 0 | + 8. 9 | + 43. 73 | 0. 0 | 0. 0 |
46 | 0. 0 | + 56.130 | 0. 0 | - 1. 0 | - 73. 71 | 0. 0 | 0. 0 |
47 | 0. 0 | - 7.136 | 0. 0 | + 16. 17 | + 16.130 | 0. 0 | 0. 0 |
48 | 0. 0 | - 15. 0 | 0. 0 | - 2. 0 | - 17. 30 | 0. 0 | 0. 0 |
49 | 0. 0 | - 15. 18 | 0. 0 | + 32. 33 | - 15. 78 | 0. 0 | 0. 0 |
50 | 0. 0 | - 30. 3 | 0. 0 | - 4. 0 | - 22.123 | 0. 0 | 0. 0 |
51 | 0. 0 | - 30. 41 | 0. 0 | + 64. 65 | + 95.106 | 0. 0 | 0. 0 |
52 | 0. 0 | - 60. 15 | 0. 0 | - 8. 0 | + 50. 18 | 0. 0 | 0. 0 |
53 | 0. 0 | - 60. 99 | 0. 0 | -127.129 | - 79. 20 | 0. 0 | 0. 0 |
54 | 0. 0 | -120. 63 | 0. 0 | - 16. 0 | + 96. 63 | 0. 0 | 0. 0 |
55 | 0. 0 | -121. 7 | 0. 0 | + 1. 0 | - 5.136 | 0. 0 | 0. 0 |
56 | 0. 0 | + 15. 3 | 0. 0 | - 32. 0 | - 79. 30 | 0. 0 | 0. 0 |
57 | 0. 0 | + 12.243 | 0. 0 | + 1.255 | - 39. 14 | 0. 0 | 0. 0 |
58 | 0. 0 | + 28. 4 | 0. 0 | - 64. 0 | + 35. 5 | 0. 0 | 0. 0 |
59 | 0. 0 | + 21.228 | 0. 0 | + 3.253 | + 77.253 | 0. 0 | 0. 0 |
60 | 0. 0 | + 48. 6 | 0. 0 | -128. 0 | + 72. 9 | 0. 0 | 0. 0 |
61 | 0. 0 | + 27.198 | 0. 0 | + 7.249 | +108.185 | 0. 0 | 0. 0 |
62 | 0. 0 | + 64. 10 | 0. 0 | + 0. 2 | -127.238 | 0. 0 | 0. 0 |
63 | 0. 0 | - 8.119 | 0. 0 | + 15.241 | + 31.113 | 0. 0 | 0. 0 |