Таблица F3.A-1.6 Свертка 2-х векторов (r)X[t] и (r)H[t] длины T= 8 GF( 1 + 223 ) = GF( 1 + 28 ) = GF( F3 ) в (A-1)-арифметике, T–1 = 1/T = 0'11100000B = -32 Результаты в (A-1)-арифметике в виде 9-битовых слов = ПСАНВ± mod F3, т.е. в диапазоне [128..+128] |
t |
(r)X[t] вх.Сигнал |
(r)X[f]= ЧПФ((r)X[t]) |
(r)H[t] вх.Сигнал |
(r)H[f]= ЧПФ((r)H[t]) |
(r)E[f]= (r)X[f]·(r)H[f] |
(r)E[t]= оЧПФ((r)E[f]) |
(r)G[t]= (r)E[t]/T mod F2 |
0 0'00011111 = 32 0'00111111 = 64 0'00000000 = 1 0'00000010 = 3 0'10111111 = -65 0'11111111 = -1 0'00011111 = 32 1 0'00111111 = 64 0'00100000 = 33 0'00000001 = 2 0'00001000 = 9 0'00100111 = 40 0'11111100 = -4 0'01111111 = 128 2 0'11100000 = -32 0'00111011 = 60 1'00000000 = 0 0'00100000 = 33 0'10110100 = -76 0'11111101 = -3 0'01011111 = 96 3 1'00000000 = 0 0'00001101 = 14 1'00000000 = 0 0'10000000 =-128 0'00000110 = 7 0'00000001 = 2 0'11000000 = -64 4 1'00000000 = 0 0'11000000 = -64 1'00000000 = 0 0'11111111 = -1 0'00111111 = 64 1'00000000 = 0 1'00000000 = 0 5 1'00000000 = 0 0'00100010 = 35 1'00000000 = 0 0'11111001 = -7 0'00001011 = 12 1'00000000 = 0 1'00000000 = 0 6 1'00000000 = 0 0'01000011 = 68 1'00000000 = 0 0'11100001 = -31 0'11001100 = -52 1'00000000 = 0 1'00000000 = 0 7 1'00000000 = 0 0'00101101 = 46 1'00000000 = 0 0'10000001 =-127 0'01000100 = 69 1'00000000 = 0 1'00000000 = 0 |