◄ Глава 1.3
▲ Выше
Глава 1.5 ►
|
1.4 Углублённое рассмотрение LG-подхода |
Слово (1.4.3) — это элемент формального языка высшего уровня — Языка Переводов (разд.2.8 и глава 12). Как и ранее, символ π не несёт смысловой нагрузки. Он предназначен для связи параметров в одно слово и указания, что это слово — дерево переводов. Параметры ik идентифицируют рёбра дерева. Список функций, называемый functions, отражает связи между рёбрами. Эти связи предназначены для поддержки структуры данных дерева, которая представлена здесь линейно как слово или цепочка символов. Построение LG-дерева (1.4.3) управляется генерацией и взаимодействием Web-сетей (1.4.2) и Траекторий (1.4.1). Если LG-алгоритм используется обоими игроками, то вариант (или варианты) ходов, порождаемый применением LG-стратегии для обоих игроков, является некоторой ветвью LG-дерева. Однако этот вариант не обязан быть подсловом (1.4.3) в Языке Переводов, состоящим из непрерывной подцепочки символов. Например, рассмотрим дерево с 4 узлами π(1) π(2) π(3) (рис.1.3). Ребро π(1) ведёт от корня R к единственному потомку, который обозначен как X, ребро π(2) ведёт к левому потомку X и ребро π(3) ведёт к правому потомку X. При обходе сначала вглубь (слева направо) рёбра будут занумерованы в виде списка π(1) π(2) π(3). Подслово π(1) π(2) представляет левую ветвь дерева. Есть ещё одна ветвь, состоящая из последовательности рёбер π(1) и π(3), т.е. подслово π(1) π(3). Однако это подслово π(1) π(3) не является непрерывным подсловом для π(1) π(2) π(3). |
Рис.1.3 Дерево с 4 узлами π(1) π(2) π(3). |
Если LG-алгоритм используется только одним игроком, то вариант игры, возникающий после применения LG-стратегии для этого игрока, не обязан быть ветвью LG-дерева, упомянутого выше. Причина состоит в том, что противник может использовать ходы, которые не входят в варианты, образующие LG-дерево. Поскольку LG-алгоритм искушён в отборе вариантов, то те ходы противника, которые не принадлежат этим вариантам, обычно будут более слабыми ходами. Однако, определить слабость ответа противника LG-алгоритм может лишь после построения нового LG-дерева для состояния, которое возникнет после этого неожиданного хода противника. |
Рис.1.4 Диаграмма Иерархии Формальных Языков в LG. |
Диаграмма Иерархии Формальных Языков в LG показана на рис.1.4. Эта диаграмма является детализацией диаграммы, показанной на рис.1.2. Язык Переводов — это язык деревьев перебора. Слово этого языка может быть иллюстрировано деревом. Одно из таких деревьев с 5 рёбрами и узлами (1-6) показано на рис.1.4. Узел этого дерева соответствует состоянию сложной системы (1-6). Декомпозиция системы на подсистемы представлена в LG как Иерархия Формальных Языков. В каждом состоянии декомпозиция представлена иерархией двух языков — Языка Web-сетей и Языка Траекторий. Слово Языка Траекторий соответствует символу в слове Языка Web-сетей. Эта двойная иерархия иллюстрируется двумя вложенными треугольниками, присоединёнными к каждому узлу LG-дерева. Связь между этой иерархией и вышестоящим Языком Переводов (показанным как один большой треугольник) отличается от связи между языками внутри двойной иерархии. Слово Языка Переводов, т.е. перебор, представляет LG-дерево с узлами-состояниями, за которыми закреплены двойные иерархии. Поэтому, двойные иерархии соответствуют каждому символу слова Языка Переводов. Это иллюстрируется на рис.1.4. LG-перебор может быть представлен как логический вывод слова (генерация LG-дерева) в Языке Переводов. Преимущества представления декомпозиции LG-системы в виде Иерархии Формальных Языков станут более очевидными, когда мы рассмотрим формальный механизм для генерации этой Иерархии. В задачах распознавания образов формально-лингвистический подход был предложен для представления иерархически структурированной информации, содержащейся в каждом образе, т.е. для описания образов посредством более простых подобразов. Этот подход обнаруживает аналогию между иерархической структурой образов и синтаксисом формальных языков. Правила, управляющие слиянием подобразов в образы, обычно задаются грамматиками описания образа, а мощь такого описания объясняется рекурсивной природой грамматик. Используя подобный подход для генерации Траекторий и Сетей Траекторий, мы используем раздел теории формальных грамматик, который был разработан Кнутом (1968), Розенкранцем (1969), Волченковым (1979), Штильманом (1985) и называется теорией управляемых грамматик. Детальный анализ управляемых грамматик и их приложений к LG приведен в главах 8-12, 14. Недавнее исследование точности решений, полученных с помощью LG-алгоритмов, привело к более глубокому пониманию мощи этого подхода. Как выяснилось, инструменты LG способны реализовать конструктивную декомпозицию пространства состояний (глава 13). LG-инструменты позволяют нам формально описывать существенные подмножества пространства состояний и формулировать потенциально выигрышные стратегии, т.е. классы путей в пространстве состояний, ведущие из начального состояния в подмножества состояний, которые мы хотим достичь. Некоторые из этих стратегий могут быть забракованы, как нереализуемые. Следующий шаг — это попытка формальной реализации незабракованых стратегий для каждой из противоположных сторон. Это доказуемо лучшее поведение из того, что каждая сторона в принципе может сделать. Применение потенциально выигрышной стратегии для каждой стороны кончается генерацией LG-дерева, которое является оптимальным решением переборной задачи. Подобные идеи работают для различных классов игр. Оптимальность доказана для классов многоагентных последовательных и параллельных военных игр с d-мерной операционной областью действий — подмножеством Zd. Это исследование привело к новому направлению в LG: решение переборных задач путём построения стратегий без какого-либо перебора на дереве (глава 13). |
◄ Глава 1.3 ▲ В начало текущей Глава 1.5 ▲ |
Последнее обновление 09.09.2005, size=25 568 bytes
© 2005 г., Александр Тимофеев, г.Харьков, Украина, Об авторе eMail: atimopheyev@yahoo.com |