
This is an extended version of the paper published in the Proc. of the International Symposium on Applied Corporate Computing - ISACC94, pp. 147-156, 
Monterrey, Mexico, Oct. 1994. 

Software Development Environment for Concurrent Design and Maintenance of 
Complex Research Projects 

Boris Stilman 
Department of Computer Science & Engineering, University of Colorado at Denver 

Campus Box 109, Denver, CO 80217-3364  
E-mail: bstilman@carbon.cudenver.edu 

 
Abstract—A Software Development Environment called 
PROGRAMMERS WORKBENCH (PW) is considered in 
this paper. It is intended to support concurrent software 
development and maintenance of large-scale research 
projects. Such projects usually involve an extended 
prototype period for investigation and improvement of the 
algorithm on which they are based. This period often 
includes even the maintenance phase, i.e., the entire 
software life cycle. Thus, each prototype must be extremely 
flexible to provide multiple redesigns.  The environment 
supports concurrent development and multiple 
redevelopment iterations. It provides support of individual 
software development skills by combining independence of 
a software designer acting alone and strict discipline of 
cooperative research projects. The PW was implemented 
on IBM hardware. It has been used in several research 
institutions for the development and maintenance of large-
scale artificial intelligence projects.   
 
1. INTRODUCTION. 
 Many software design projects require extreme 
flexibility. First, we are concerned with research projects. 
Although requirements specifications might be clear and 
well defined, the design specifications and the algorithm 
are vague, because both of them usually are subjects for 
research. Of course, we can not develop software following 
a vague algorithm. Thus we have to define the first version 
of the algorithm, design the first software prototype, 
investigate this prototype and find a way for improvement 
of the initial algorithm or even to change it entirely. This 
brings us to the second iteration of the design process: we 
have to design the second version of the algorithm, 
prototype, etc. This model is analogous to the spiral 
software engineering model [1] with the following 
differences. First, we should not redefine requirements 
specifications after each iteration: they are stable. Second, 
we should not perform risk analysis, because our purpose is 
different. Instead, we have to conduct prototype 
investigation to test the ideas on which the algorithm is 
based. We have to improve these ideas and implement 
them in the new version. Obviously, it could be better to 
investigate the algorithm theoretically but for complex 
projects it is usually impossible. 
 Following this software design model we can start 
each new iteration almost from scratch, i.e., from 
requirements specifications, and redesign everything. 
Unfortunately, it may extend the design process 
dramatically and eventually cause the failure of the entire 
project. A different approach is to redesign each new 
prototype from the previous one. Thus, we have to make 

every prototype (and its components) extremely flexible 
and in some sense reusable [2]. We need a problem-
oriented building set of reusable building blocks of 
different sizes. The harder the skeleton of the old building, 
the easier to perform future redesign. Sometimes, very 
rarely, even the skeleton should be rebuilt. To support 
flexible, changeable prototypes we have to provide a hard 
structure for the applications through structured design and 
implementation, and what is more important, to keep this 
hard structure during the entire software life cycle. This 
problem is closely related to the notorious software 
maintainability problem that is considered as desperate 
problem for all types of software projects (not only for the 
research ones) [3]. 
 The next problem, which complicates our discussion 
substantially, is the problem of concurrent development. A 
series of flexible prototypes should be designed in a close 
cooperation of software research engineers. The question is 
how to support the design of a large structured prototype 
by a software team. This might be accomplished by 
breaking down the design into sub-designs, by the support 
of the interaction and control of sub-designers, and, of 
course, by providing a strict design discipline. At the same 
time, team members often are bright researchers, or even 
simply bright software engineers whose creativity skills 
would naturally resist this all-embracing cooperation, 
control and discipline. How to reveal these natural skills, 
how to give individuals the freedom required for revealing 
their creativity? We must find a method to direct all their 
energies to the benefit of the project instead of the natural 
resistance to cooperation and discipline. 
 The support of software flexibility, maintainability, 
and concurrent development is the key point of our 
requirements for the design of a software development 
environment. Subordinate to these key points are software 
run-time efficiency, portability, software correctness and 
reliability.  
 Complex research projects usually demand so much of 
the hardware that SDE overhead expenses should be 
reduced to a minimum. Moreover, the environment should 
support the development of applications with the highest 
performance parameters. 
 The environment itself should be portable, employing 
for example the approach of the UNIX designers. The 
biggest hardware independent piece should be written in a 
higher level popular language, while the rest of the system, 
the hardware dependent piece, should use an assembly 
language, and would be rewritten in case of porting the 
system to new hardware. Obviously, the environment 
should support the development of extremely portable 
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 The process of the development of complex software 
project might generate tens or even hundreds of different 
versions. One of the main purposes of the environment is to 
provide the support for the design, cooperation, and control 
and design of these versions.  

software, because porting to new equipment is the routine 
procedure for long-range research projects. 
 The environment should support the development of 
“correct” and reliable software to give a researcher the 
opportunity for investigation of algorithms of all the 
intermediate prototypes, avoiding interference of bugs as 
much as possible. 

 Here, we would like to emphasize that usually a typical 
version does not represent the entire project. At best, it is a 
rough draft only. Some of these versions, the designated 
versions, do represent it. This row of designated versions 
corresponds to the row of prototypes of our model. 

 There are many different software environments [4, 5]; 
they have some advantages and disadvantages, and 
research in this field is the hot point of software 
engineering. In order to meet precisely the requirements 
presented above we have designed a new software 
development environment (SDE)  PROGRAMMERS 
WORKBENCH. 

 Let us consider the creation of versions at the initial 
stage of software design (Fig. 1). We follow the top-down 
design model proposed in [6], a structured programming 
approach [7] and later proposed methods for the translation 
of data flows into design definitions [8]. The pyramid 
shown in Fig. 1 represents a design structure chart of the 
application to be developed. This is a hierarchical tree of 
boxes (modules) with the root (main module). Branches of 
this tree are the sequences of modules traced down from 
the top, such that each successor is subordinate to the 
predecessor.  The set of modules (or sections) included into 
the top of this structure chart is called a master version. 
They represent subordinate sections of the highest level as 
well as, probably, some of the most important I/O sections 
of our application. This initial master version will be the 
common piece and, consequently, must be included into all 
the versions to be created. 

 The requirements listed above require further 
refinement in the form of the software development model. 
In this paper we consider such a model (Sections 2-5); then 
we present implementation issues. 
 
2.TOP-DOWN DESIGN: VERSION APPROACH 
 In order o expedite the development of a software 
project we have to break it into parallel processes as early 
as possible. This way we can involve team members in 
simultaneous work. According to principles considered in 
the introduction, we are going to support software 
development beginning with the design stage. Thus, we 
have to introduce a parallel design model as well as parallel 
models for all the rest of development steps: 
implementation, testing and debugging, and maintenance. 
Our main software development model represents software 
development as the design of the sequence of prototypes, 
so all these parallel models should be included into the 
cycle and, moreover, nested into each other. The key 
element of this series of models is the notion of a version. 

 Here is the point for the initial break of the design into 
sub-designs. We can separate some branches. Each branch 
should include its own sections as well as a common piece, 
the top sections. Such a branch is called an initial version.  
Versions shown in Fig. 1 have a common piece, the master 
version. However, it is not a restriction: they might have 
some other intersections as well, i.e., different common 
sections that are very important to be included into the 
group of versions, but not important enough to be included 
into the master version. 

Master Version

Version 1
Version 2

Version 3

Sections

Application
  

 Obviously, we can break down our design not only at 
the top. Any node (box) of the structure chart tree can be 
considered as the break point. New versions to be created 
must include the master version, existing versions coming 
down into this node (or at least sections of one branch 
coming into this node) and one of the branches coming 
down from this node. The main reason for the creation of a 
new version is to initiate an independent software design 
process. When creating a new version we should take into 
account the semantics of this future version (as an 
independent set of sections) and the possible consequences 
of this (even temporary) separation. 
 
3. VERSIONS IMPROVEMENT CYCLE 
 As we know the creation of a new version initiates an 
independent software development process. This process 
includes all the stages of software life cycle: design, 
implementation, testing/debugging, and maintenance. Even 
after the generation of an intermediate prototype some 
versions might continue their life cycle during the 
algorithm investigation. During their life cycle, versions 
can actively interact to each other. Next, we will consider 
different types of mutual interactions between versions and 

Fig. 1. Top-down design: initial versions 
 A version is an independent software unit containing 
design specifications (architectural and procedural), 
implementation information (source and object codes), 
testing/debugging information, specific debugging 
problem-oriented tools, and control information. A version 
is intended for the personal development by a software 
team member.  
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 MACROOPERATIONS the outer environment. 
 Along version improvement many other operations 
with versions are required to support cooperation and 
control of independent development processes. Here, we 
will consider macrooperations because they can be defined 
in terms of the whole versions without consideration of 
version inner structure. These macrooperations are 
intended to support close cooperation and control of 
software designers through automatic support of various 
interactions between versions (Fig. 3). 

 While the creation of new versions happens rarely 
during software process, more often we have to include one 
of the existing versions into all other versions. Assume that 
at some stage of software development 9 different versions 
have been created (Fig. 2). Versions A1, A2, A3 were at 
the disposal of the designer A, versions B1, B2, B3 and C1, 
C2, C3 — at the disposal of the designers B and C, 
respectively. All the versions include the common piece, 
the master version. Subsequent development was 
conducted independently by each designer. It could happen 
that one of the versions, e.g., version A1, has “matured” 
enough to be designated a new master version. For 
example, version A1 has been fully designed, implemented 
and even tested and debugged. In this case it is feasible to 
make this designation and include this new master version 
into all the rest of the existing versions. 
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Fig. 3. Versions interaction: macrooperations 
 The first operation is called a creation. It takes place 
when we have to generate the empty version. This empty 
version does not include any application design sections 
but it has something, which is called a kernel. The kernel is 
a software unit that is included into every version. Its 
purpose is to support interaction of this version with the 
software development environment, to support all the 
operations, and actually to turn a set of design sections into 
the version. The kernel itself is invisible for a software 
designer, but after creation, the version, although empty, 
becomes “visible as independent object represented by 
name” in different lists generated by the environment. 

Fig. 2. Versions development cycle 
 The purpose of this inclusion is to bring our versions 
closer to the complete future prototype, to reduce missing 
pieces (which were substituted by stubs). Obviously, this 
version improvement should be done as soon as possible. 
This procedure is depicted in Fig. 2: version A1 is 
designated a new master version and included in all the 
versions of designers A, B, C. This procedure is called a 
version improvement cycle.  
 To avoid misunderstandings, we have to distinguish 
this version improvement cycle from the main development 
cycle resulting in the new prototype after each iteration. 
Each iteration of this main cycle includes multiple 
iterations of the version improvement cycle; the final 
version improvement creates the next prototype. 

 The next operation, called a destruction, is very 
simple. The version considered as an object, which 
concluded its task, must be destroyed. The version that is 
subject for destruction is shown in Fig. 3 as a union of two 
figures, an ellipse and a circle. The circle represents the 
master version.  
 The operation called inclusion can be explained as 4. VERSIONS INTERACTION:  
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 MICROOPERATIONS follows. During the independent development of a version 

(see left argument in Fig. 3) some sections were designed, 
implemented and tested, while the entire version is not 
ready yet to substitute for the new master version. These 
sections are shown in Fig. 3 as black circles. In this case a 
manager can make a decision about inclusion of the 
finished piece (black circle) into other versions (right 
argument). 

  The following operations are actually routine software 
development procedures but here they appear in the new 
framework of version development. They are called 
microoperations,  because they require to interfere into the 
inner structure of a version or display some details of this 
structure. Microoperations are broken into three modes: 
design mode, execution mode and debug mode (Fig. 4). 
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 Sometimes independent development of some versions 
can not continue any longer. For example, comprehensive 
testing of one of the versions requires the development of 
complicated stubs to substitute for the sections of the other 
version. A different situation is as follows: independent 
development showed that separation of this version was 
unreasonable because the semantics of a separated piece 
was not well defined. In all such cases we have to merge 
this version with some other existing ones. Operation 
merge is shown in Fig. 3. Of course, the master version 
component will not be duplicated in the result of this 
operation. It is shown as one small circle in Fig. 3. The 
same operation is used for inclusion of the new master 
version into all other versions during the version 
improvement cycle. 
 After active development, a version might be left 
unchanged, actually preserved, for future reference, while 
its copy will stay under development. This way the 
preserved version will grow old: some sections will no 
longer be up to date. They will be changed in the active 
copy. That is why we need an operation of equalization of 
two versions. After this operation both versions will 
become identical by substituting aged sections for the 
updated copies (black circle in Fig. 3). Fig. 4.  Version development: microoperations 
 The operation of purge is intended to purge some 
sections (black circle) from a version. These sections 
proved their unsoundness in different versions and earlier 
were deleted from them. When it is decided to purge all the 
unsound sections from the rest of versions, it can be 
accomplished by the purge operation. 

 In the design mode a developer updates his version. He 
designs new sections of the structure chart, updates this 
chart, develops detailed design of sections, e.g., in 
pseudocode and in English, updates this design, develops 
sections source texts and updates them. First, he employs 
requirements specifications, draft pieces of design, 
pseudocode and source texts, which are kept in the SDE 
Archive (Fig. 4). Second, a developer can use existing 
versions as a valuable source of draft designs and source 
texts (see versions 1, 2, 3 in Fig.4). All this information can 
be copied into the developer’s work file for joint editing. 
Small white circles in Fig. 4 represent sections. After 
editing, the contents of sections and their number have 
been changed. Four sections shown in Fig. 4 are combined 
into one new section. Now we are prepared to update 
version 3. We should keep in mind that a version is a 
complex object and can not be updated instantly, as can be 
done with an editor’s work file on screen. Thus, version 
update requires a specific microoperation update. As a 
result of this, the prepared designs or source texts will be 
“compiled” into the version. For example, if source text of 
a section was edited and sent for a version update then the 
following changes will be accomplished. The SDE will 
update source text, object code, storage allocation and 
cross reference tables, debug options, and version control 
information. 

 At some stage of the version development it may 
become apparent that this version should be broken into 
two different versions. It might happen when a designer 
decides that the current version is “overloaded” (got too 
big) and further development, e.g., testing, can not continue 
properly without a break.  With the list of sections to be 
separated as an input, the operation break  creates two new 
versions.  
 To keep track of the development of different versions 
and control cooperation of the designers, we have to 
compare versions in pairs to find a difference, a list of 
sections that are included in the first version and not 
included in the second. The operation difference performs 
this duty. The result of this operation is often used as an 
input for other operations, e.g., for the break. 
 The macrooperations considered above support 
interaction between versions, and in this way, cooperation 
of software developers. Below we consider 
microoperations, which support the development of each 
version in a version life cycle. 
  Next, we are going to discuss an execution mode (Fig. 

4). In this mode a version can be executed and tested as an 5. VERSION DEVELOPMENT:  
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 PW communicates with OS interactively emulating an 
operator console. OS files generated by versions during the 
execution (or other files) are accessible through PW Editor 
for screening in the design mode. Their update is permitted 
in the execution mode only. Communication with the 
standard IBM CICS Users Archive is fully interactive: 
CICS modules can be copied into the Editor’s work file, 
updated and then reloaded into the CICS Archive. 

executable unit. Every design section represented in the 
version by stub or source code is represented by object 
code as well. This code is generated by the SDE 
automatically. Thus, every section is executable, and the 
entire version can demonstrate the performance, which is 
close to the performance of the future prototype. (This 
closeness depends on the closeness of this version to the 
prototype.) The kernel of the version under SDE control 
should support multi-channel version I/O and allocation of 
physical terminals to the specified channels (I/O switches). 
It also provides run-time infinite loop protection, registers 
exceptional situations (e.g., errors), catches interrupts and, 
in this case, switches the version into debug mode. 

P
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Fig. 5. Structure and communications of PROGRAMMERS 
WORKBENCH 

 The debug mode is intended to support detailed 
investigation of the version, looking for a source of 
exceptional situation registered at the execution mode. In 
this mode the execution is suspended or interrupted. In 
response to the developer’s request SDE is able to display 
current trace of section calls, values of all the variables, 
data structures, current state of version files, all the source 
texts, cross reference tables (e.g., lists of subordinate and 
superordinate sections). In this mode a developer can also 
start a problem-oriented debugging subsystem to convert 
complex data to the higher level representation or generate 
standard “correct” data with automatic comparison with the 
registered values (Section 13). 
 In a short description of macro- and microoperations 
we outlined the basic principles of a software environment 
for cooperative design. In the following sections we will 
consider some details of implementation of these principles 
in the form of the SDE PROGRAMMERS WORKBENCH 
(PW). Early versions of this SDE are considered in [9, 10].  

 
6. STRUCTURE OF PROGRAMMERS  
 WORKBENCH 
SDE consists of the following tools (Fig. 5): 
— PW Monitor, an interactive subsystem which controls 

all other tools and communications with outer objects; 
— PW Editor, a multi-user multi-window screen editor, 

which supports all the microoperations in design 
mode. It communicates with PW inner objects PW 
Librarian and PW Archive as well as with  outer 
system software: Operating System (OS), OS Files 
Archive, and CICS Users Archive (Fig. 5); 

 Basically, inner PW communications support macro- 
and microoperations with versions. Macrooperations are 
complex and require a lot of processing. So, they are 
implemented in the off-line mode, while microoperations 
(except one) are fully interactive. The only exception is 
version update microoperation after source text editing. It 
is performed by PW Librarian in the off-line mode. 

— PW Archive of design and source text drafts, that are 
currently under development. It also contains source 
texts and object code of all the PW tools; 

— PW Librarian, a subsystem for automatic support of all 
the macrooperations utilizing the version update 
microoperation. This subsystem manages the library of 
versions; 

 
7. WORK PROCEDURES IN  
 PW ENVIRONMENT      
 These procedures are depicted in Fig. 6. The design 
and implementation stages of the software development 
process are represented by the upper loop. Working with 
PW Editor a developer performs initial and detailed design 
of his version. A developer saves drafts of his design 
temporarily in PW Archive. The beginning of a version’s 
own life cycle is as follows. After preparing the initial 
version as a set of pseudocode sections, stubs and section 
descriptions in English, a designer creates a version as a 
unit to be managed by SDE. This version update job being 

— PW Run-Time Monitor, a subsystem that supports 
microoperations in the execution mode; 

— PW Debug Monitor, a subsystem that supports 
microoperations in the debug mode. 

 The PROGRAMMERS WORKBENCH is an 
integrated software development environment implemented 
with IBM hardware and software. Communications 
between SDE subsystems and with outer objects are shown 
in Fig. 5.  
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started by Editor’s command, collects all the necessary 
source pieces from Editor’s work file, Archive, from 
existing versions, combines all components, and creates 
new version or updates an existing one in the off-line 
mode. Now the designs and texts are present in the updated 
version; they form a structure that is available for the PW 
Editor for screening and further update. (The drafts saved 
temporarily in the Archive now must be deleted.) The 
subsequent design consists of repetitions of this loop. 

Editor

off-line

copy source 
texts from 
different versions

save temporarily

copy

start version update job

job retrieves the 
  entire version

updated version 
        return

switch switch

PW  Run-time I/O 
       support

program 
    I/O

program 
     I/O

PW Archive

PW Versions 
 version 
execution

 interaction 
with version 
   in debug 
     mode

  PW  
debug 
mode

under PW Librarian control

Fig. 6. Work procedures in PW environment 
 The implementation stage employs the same 
procedures. The only difference, practically invisible to the 
designer, is the execution of version update operation. SDE 
generates (or updates) object code, storage allocation and 
cross-reference tables, and checks syntactic structure of the 
entire version. 
 The subsequent testing and debugging steps are 
presented at the bottom in Fig. 6. In  the execution mode 
running versions under control of the Run-Time Monitor 
can allocate different terminals for I/O, switch from one 
terminal to the other (from one channel to the other), or 
even to a dummy terminal, i.e., continue execution without 
output. After registration of an exceptional situation, SDE 
passes control to the Debug Monitor. It will support a 
debug session on the same terminal or can switch to a 
different one. All the information about the interrupted (or 
suspended) version is available for the designer in this 
mode: source texts, cross-reference storage allocation 
tables, and values of data structures. We will consider some 
details of these modes in Sections 12 and 13. Testing and 
debugging result in a version update, i.e., we return to the 
upper loop procedures (Fig. 6).  
 The SDE PW supports concurrent design providing 
full support of versions macrooperations. Their 

implementation is based on the version update 
microoperation (Fig.4). The PW Librarian prepares source 
texts (designs, descriptions in English) of the sections to be 
updated. A list of these sections is usually the input 
information for the Librarian. Sometimes the Librarian 
itself can generate this information, e.g., comparing two 
versions and computing the difference, the list of different 
sections (Fig. 3); then it can use this difference for the 
version update. The update itself is performed by deleting 
sections to be destroyed, by generating object code for the 
new sections or for the sections to be substituted, by 
linking all the sections and recomputing the tables.      
 The approach to software development supported by 
SDE PW does not require a completion of a current 
development step before the beginning of the next one. For 
example, in order to begin testing we do not have to finish 
implementation of the entire version. An unimplemented 
piece will be represented by stubs and pseudocode. It 
means that we can have a “version prototype” at the initial 
steps of the design. The following development of this 
prototype will result in a cyclic repetition of steps: design – 
implementation – testing – debugging – design. In software 
development practice in general we always have this loop, 
but usually it is poorly supported. This loop is essential at 
the maintenance stage of the software life cycle. Thus, SDE 
supports maintenance long before the completion of the 
development: the entire software life cycle is considered as 
a maintenance process. 
 
8. VERSION STRUCTURE 
 A version is implemented as a partitioned data set 
regarding to IBM OS MVS(SVS). Each version consists of 
the partitions of the following five types: object code (load 
module), sections documentation (pseudocode, descriptions 
in English), sections source texts on Dijkstra language [7, 
9, 13], Fortran, Assembly, sections reference table and 
storage allocation map, version index (Fig.7). 
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Version Index.  
Sections reference table and storage allocation map
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Fig. 7. Version structure (simplified) 
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 Every subroutine of the application corresponds to one 
section of the version, i.e., to one partition of 
documentation and to one partition of source texts. Here, 
subroutine  means an arbitrary piece of text with the 
following first and last lines: the first line contains the 
word SUBROUTINE and the name coming next, the last 
line contains the word END. Thus, all the subroutines in 
Fortran (or Dijkstra) are separate sections as well as pieces 
of the text singled out intentionally, e.g., functions in 
Fortran, Assembly subprograms, and descriptions in 
English. Every section has its own unique name, a name of 
the subroutine. Sections with source texts and 
documentation are compressed. 
 The structure of the Version Index is shown in Fig. 7. 
Let us consider some details. Creation date means the date 
when this section was included into this version. Compiler 
type contains a symbol corresponding to the compiler 
which was used for generating object code of this section. 
It might be an optimizing or debugging Fortran compiler, 
or Assembler. Next Index item indicates the presence of 
instructions generated by source statements DEBUG in the 
section object code. Last Index item contains an indicator 
that this section is a debugging one (see Section 11). 
 This version structure allows implementation of all the 
macro- and microoperations considered above. For 
example, if we have to equalize two versions, the Librarian 
can find in the leading version all the sections updated later 
than the specified date. After that, it will collect their 
source texts  (documentation) and update the aged version. 
Another example: in order to report about aged 
documentation, the Librarian can search Index and find all 
the sections where last source update date is greater than 
last documentation update date. Employing PW Editor we 
can copy Index, any source texts or documentation from 
the version into work files. It allows us to edit  
simultaneously two or more texts copied from different 
versions in different windows, then combine these texts 
and send a command to start version update job. 
 Next we consider an implementation of the version 
update operation, which is the major component of all the 
macrooperations. 
 
9. VERSION UPDATE OPERATION     
 This operation can be initiated by the designer typing 
the PW Editor command or automatically by the Librarian 
itself as part of a macrooperation. For simplicity we will 
consider this operation without documentation update and 
without Assembly sections. 
 A typical version update operation has three input lists 
(Fig. 8). The first one consists of the names of sections to 
be updated in the version (or new sections). The second list 
(possibly empty) consists of the names of sections for 
DEBUG statements insertion. Each insertion is 
accompanied by the indication of specific type of these 
statements and activating conditions. The third list shown 
in Fig.8 between first and second lists is the list of source 
texts in Dijkstra or Fortran. All these lists were previously 
updated by the PW Editor or passed by Librarian from the 
previous steps of a macrooperation. 
 The next step procedure, CHOOSER, selects from the 

third list source texts according to the names from the first 
and second lists. CHOOSER inserts run-time parameters 
check statements into all the sections selected. Conditional 
and unconditional DEBUG statements are inserted into the 
sections from the second list. No statements inserted above 
will stay in the version source texts. However, the version 
object code will be updated and the version Index will have 
a pointer, which indicates the presence of instructions 
generated by DEBUG source statements in the section 
object code. 

Names of sections 
    to be updated

Sourse texts
      Names of sections for 

DEBUG statements 
insertion  

               CHOOSER 
      selects  texts and inserts 
      DEBUG and parameters 
check statements into these texts 

FORTRAN EXTENDER

FORTRAN COMPILER 
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         LINK EDITOR    Version to   
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             REGISTER 
updates version tables and 

                 Index

          UPDATER 
 updates sourse texts and 
     version object code

    generates Fortran code

  generates object code

for each 
 section

(cond. and uncond.)

Fig. 8. Version update operation 
 Source texts prepared in this way are passed to the 
FORTRAN EXTENDER. Basically, this procedure is the 
implementation of the preprocessor from the Dijkstra 
language to Fortran. It generates pure Fortran code and 
passes control to the IBM FORTRAN COMPILER.  The 
type of compiler to be called (debugging or optimizing) is 
predetermined by the presence (or absence) of DEBUG 
statements in the current section. In case of the absence of 
DEBUG statements, only the optimizing compiler (with the 
highest level optimization mode) is used. Storage allocation 
tables are passed to the subsequent steps. 
 Object code sections generated by the compiler come 
into the IBM LINK EDITOR. This editor retrieves the 
version, i.e., partitioned file, to be updated. Then it inputs 
version object code (load module), and updates it. New 
load module and cross-reference tables generated are 
passed to the next procedure. 



8 
 Having received storage allocation and cross-reference 
tables, the procedure REGISTER updates version tables 
and Index. 
 Next, procedure UPDATER updates section’s source 
texts and object code. UPDATER compresses source texts 
received from the early steps and generates new sections 
(new partitions of the partitioned file). As usual for IBM 
OS partitioned data sets, new partitions are added to the 
end of the data set, while old partitions with the same 
names are destroyed. Before adding new partitions to the 
version, the Librarian checks the room in the data set for 
this operation and compresses this partitioned data set if 
necessary. 
 
10. DOCUMENT UPDATE SERVICE 
 In order to meet the requirements of flexibility, 
reusability of some sections, maintainability and 
coordination of concurrent design stated in the introduction 
to this paper we have to keep a strict correspondence 
between all the version components. From Section 9 we 
can see that correspondence between source texts, object 
code, version tables and version Index is supported 
automatically. A manual source text update (after editing) 
can be saved in a version only through a general version 
update. Thus, by updating all the version components the 
Librarian keeps mutual correspondence between them. The 
problem is substantially harder for documentation update. 

  Sourse 
and object

Documents

Version A

Version B

Documents

  Sourse 
and object

WEEKEND

Librarian

 
Fig. 9. PW document update service 

 We allow informal (but readable) documentation, e.g., 
pseudocode, descriptions in English; so its analysis and 
update are hard to accomplish automatically. To do that we 
would require an expert system with natural language 
analyzer, which was beyond the scope of this project. Thus, 
at this point we have to rely on a software designer: he 
must update documentation himself. While software 
development steps run successively, i.e., requirements 
analysis, design, implementation, etc., the documentation 
designed at each step is up to date. But after the first 
change at the implementation, testing or maintenance step 
and, especially, during algorithm investigation, we face a 

problem. It is hard to force the designer to update 
documentation before the source text update, especially if 
this change is only experimental and probably in a few 
minutes will be replaced by a new change or even by the 
return to the previous text. So we allow a temporary 
disparity of documentation and other version components, 
say, during a week. It should be a period while a designer 
can easily recreate the ideas which motivated him to make 
the change and reflect these ideas in documentation. 
However, no grace period is allowed after the deadline: a 
disordered version must be updated or suspended, i.e., SDE 
must make this version inaccessible for the following 
design (until documentation is updated). 
 The PW documentation update service is shown in 
Fig. 9. At the end of each week the Librarian scans all the 
versions checking sections with aged documentation. It 
scans version Index and compares last source and 
documentation update dates (Fig. 7). Disordered sections 
are printed out and handed to the designers. Then Librarian 
gives designers a grace period to accomplish update. After 
the deadline unupdated versions will be suspended.      
 
11. FORTRAN EXTENDER 
 E. Dijkstra [11] developed an approach to software 
development based on the simultaneous program design 
and correctness proof. One of the most important features 
of this approach is the use of the language constructions 
whose semantics can be described formally in terms of 
predicate converters. The SDE Librarian includes 
FORTRAN EXTENDER (Fig. 8) based on Dijkstra control 
constructions [11]. This way we achieved a combination of 
understandable and readable source texts structure with the 
efficiency typical for Fortran compilers. 
 The Extender input language is an extension of 
Fortran. It includes Dijkstra constructions IF and DO. The 
syntax of the input language is as follows (assuming 
Fortran terms are known): 
 <program>::= [<subroutine name>] {<description 

statement>} {<executable statement> | <format 
statement>} <END statement> 

 <executable statement>::= <executable Fortran 
statement> | <IF statement> | <DO statement> | SKIP | 
ABEND 

 <IF statement>::=  IF<list of protected statements>FI 
 <DO statement>::= DO <list of protected statements>OD 
 <list of protected statements>::= <protected statement> 

{¤ <protected statement>} 
 <protected statement>::= <protector> {<executable 

statement> <format statement> 
 <protector>::= <simple protector> | <simple protector> 

{CAND<simple protector>} | 
  <simple protector> {COR<simple protector>} 
 <simple protector>::= <Fortran Boolean expression> —> 

| ELSE —> 
 Fortran statements are written according standard 
Fortran rules. Simple protector is written in one or more 
lines. The continuation of the line is indicated according to 
Fortran rules. Extender’s key words IF, FI, DO, OD, ¤, 
CAND, COR, SKIP, ABEND are written in a separate line 
each. 
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 Basically the semantics of control constructions 
corresponds to [11, 12] and can be briefly described as 
follows.  
 Execution of the protected statement consists of the 
execution of its executable statements. It is allowed if the 
protector of this protected statement is true. Execution of 
the list of protected statements consists either in execution 
of one of the protected statements with true protector 
(which one of them is not defined) and output of the signal 
“success”, or output of the signal “failure” if all the 
protectors are false. 
 Execution of IF statement takes place as follows: first, 
list of protected statements, enclosed with brackets IF FI, is 
executed, then if “success” is signaled a control is passed to 
the next statement after FI, if the signal is “failure” then 
program execution is interrupted. Execution of DO 
statement also consists of the execution of the list of 
protected statements, then in case of “failure” signal, 
control is passed to the next statement after DO, in case of 
“success” the execution of the list of protected statements 
is repeated. 
 More detailed description of the input language is 
beyond the scope of this paper. To clarify our formal 
discussion of this language we will consider a sample 
program VISIT (Table I) for visiting all the nodes of the 
tree represented by three arrays SON, BROTH, FATHER. 
In each node program VISIT calls subroutine DOWN on 
descent and UP on ascent. In order to understand this 
program we have be familiar with the couple of procedures 
built into the input language. They are subroutine MOVE 
which writes character string into LOGICAL array, and 
Boolean function EQ which compares values of such array 
(left parameter) with character string and yields TRUE if 
they coincide.  
 PROGRAM VISIT 
 IMPLICIT INTEGER*2 (A–Z) 
 COMMON /TREE/ SON(100), BROTH(100), FATHER(100) 
 LOGICAL DIR(6) 
 I=1 
 CALL MOVE(”PASS”, DIR, 4) 
 IF (SON(I).NE.0) CALL MOVE(”DOWN”, DIR, 4) 
 NEXT=SON(I) 
 DO 
  EQ( DIR,”DOWN”, 4) —>  

 Some situations are under special control of the Run-
Time Monitor. One of them may happen when array 
indices exceed array bounds. Another situation may happen 
in case of disparity of formal and actual parameters of 
subroutines. SDE has static and run-time parameters check 
tools. While the static tool checks the correspondence of 
parameters in the design mode and during macrooperations, 
the dynamic tool conducts this check in the execution mode 
under Run-Time Monitor control. According to Fortran 
rules this situation is not necessarily erroneous. Thus, being 
turned on, this tool suspends the execution, displays 
inconsistent parameters and requests the designer’s 
permission to resume execution or to pass control to the 
Debug Monitor. It should be noted that in order to reduce 
possible performance degradation, all these checks can be 
executed very scrupulously and activated only for small 
pieces of version code. Nevertheless, even activation of 
parameters check for the entire version does not cause 
significant delays: it is implemented so efficiently that each 
subroutine check takes only as much time as the subroutine 
“call” itself. 

  I=NEXT 
  CALL DOWN(I) 
  NEXT=SON(I) 
  IF (NEXT.EQ.0) CALL MOVE( ”BRANCH”, DIR, 6) 
  ¤ 
  EQ( DIR,”UP”, 2) —> 
  I=FATHER(I) 
  CALL UP(I) 
  CALL MOVE(“BRANCH”, DIR, 6) 
  ¤ 
  EQ( DIR, “BRANCH”, 6) —> 
  IF 
      BROTH(I).NE.0 —> 
      NEXT=BROTH(I) 
      CALL MOVE(“DOWN”, DIR, 4) 
      ¤ 
      BROTH(I).EQ.0 .AND. FATHER(I).NE.0 —> 
      CALL MOVE( “UP”, DIR, 2) 
      ¤ 
      ELSE —> 
      SKIP 
  FI 
 OD 

 END 
 Table I. A sample program on Dijkstra, a FORTRAN 

EXTENDER input language 
 The FORTRAN EXTENDER supports two additional 
Fortran extensions which are very important for the design 
of efficient software: dynamic storage allocation and 
recursion. The dynamic storage allocation subsystem 
consists of the set of built-in subroutines. The subsystem is 
flexible enough to allow application of different algorithms 
of storage allocation and deallocation. Our experience 
showed that use of dynamic storage effected applications’ 
performance insignificantly. 
 The FORTRAN EXTENDER program is written in its 
own input language (with few Assembly routines). Its 
source text occupies about 1,000 lines, while object code 
requires about 70K byte. 
 
12. EXECUTION MODE 
 In this mode, versions run under control of PW Run-
Time Monitor. Excluding I/O support and switches from 
one terminal to the other, this Monitor registers exceptional 
situations during the execution of a version and intercepts 
an interrupt caused by this situation. We will consider some 
examples of exceptional situations. 
 Usually, such situations are caused by run-time errors, 
e.g., a data overflow, an attempt to update a protected 
storage location and so on. In all these cases the Run-Time 
Monitor intercepts an interrupt, processes it and passes 
control to the Debug Monitor to initiate a debug session for 
localization of the error. 

 One of the very important situations that can be sensed 
by the Run-Time Monitor is an infinite loop. It is necessary 
to protect CPU intensive programs from this error without 
claiming a low CPU time limit, because they can easily 
exceed this limit during an error-free run but execution will 
be erroneously canceled.  It is especially important for 
unattended overnight runs or runs without on-screen 
output. 
 The main idea of the infinite loop protection is as 
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follows (Fig. 10). Consider a program execution as running 
through labyrinth of subroutines (or even statements). We 
can approximately trace this path. After a few runs we can 
do it more precisely. Let us place “alarm clocks” in 
different points of this path and assume that all of them are 
“electrically wired and synchronized”. 

Current run-time 
          trace

Subroutines

Fig. 10. Run-Time Monitor: infinite loop protection  
Imagine that we can approximately evaluate CPU time 
necessary for the program to come from one clock to the 
next one. We need only the upper bound of this time and 
after a few runs we usually can do it easily. Now set up the 
first clock on a time interval, that is deliberately greater 
than the time required to reach the next clock. Imagine that 
during the execution, the program reached the next clock in 
time, i.e., before expiration of the limiting CPU time 
interval. Then we will “turn off the clock” to prevent 
ringing and reset this clock on a new time interval required 
to reach the next clock, and so on. Now assume that the 
program did not reach the next clock in time. The clock 
will “ring” and the program will be interrupted. It is very 
likely that the program delay was caused by an infinite loop 
along the path between the clocks (Fig. 10). Thus, the 
interrupt is justified.     
 The idea considered above is implemented in the Run-
Time Monitor. For this purpose every version, in its kernel, 
has two subroutines. One of them allows setting the CPU 
timer to a certain time interval, the second intercepts and 
processes CPU timer interrupts. Interrupt processing is 
performed as follows: if the value of a logical variable 
BELL is “true”, then control is passed to the Debug 
Monitor, otherwise “true” is assigned to BELL, the CPU 
timer is reset to a new time interval and execution resumes. 
Thus, variable BELL located in COMMON /BELL/ BELL 
and, thus, being available everywhere, serves as a signal 
for two-way connection between the version and the 
subroutine for interrupt processing. During each time 
interval a version must “turn off the clock” at least once, 
i.e., assign “false” to BELL, otherwise the clock will 
“ring”, and the version will be interrupted. Subroutine 
DSPTIM is intended to perform this duty as well as to 
output and renew on screen a current version performance 
report and to accept input of user’s commands. Placing the 
statement:  

IF (BELL) CALL DSPTIM 
at certain check points in the source text allows us to detect 
an infinite loop and interrupt version execution if this 

version does not reach the next check point in time. 
 
13. DEBUG MODE 
 Debug Monitor work procedures were considered in 
Sections 5 and 7. This Monitor receives control from the 
Run-Time Monitor if an exceptional situation is detected. 
Besides that,  the control can be passed to the Debug 
Monitor at the check points predetermined by the designer. 
These points can be set up explicitly in the source text. 
They might be unconditional or have a condition in order 
to detect a run-time error. For example, we can explicitly 
check if array subscripts do not exceed array bounds. 
Moreover, we can link a check point with certain CPU 
timer readings and conduct checks only at specific time 
intervals. 
 Having received control, the Debug Monitor is able to 
display different kinds of information about the version 
including a current trace of subroutine calls, any program 
data and source texts. Let us consider a problem-oriented 
debugging subsystem, which considerably extends 
Monitor’s means of output and analysis of the information 
about current version state (Fig. 11). This subsystem allows 
a designer to write special debugging subroutines while 
preparing for testing and debugging. These subroutines can 
be activated by the Debug Monitor during the debug 
session. They might have parameters to be substituted by 
these version’s data structures or variables. This is 
performed by the Debug Monitor in a process of interaction 
with the designer just before starting debugging subroutine. 
It means the subroutine will process the current state of 
data as captured when the exception occurred. Debugging 
subroutines can solve two important tasks. First, they can 
convert and visualize version data structures into problem-
oriented patterns (Fig. 11). This allows a designer to easily 
observe these structures and consequently easily 
understand their correctness (or find an error). Moreover, 
debugging subroutines can automatically generate 
"standard" (or expected under normal circumstances) 
values of these data, compare them with registered values 
and output diagnostics. 
 Actually, the Debug Monitor supports debugging in 
terms of the source text language, and even, in some sense, 
in terms of the problem being considered. At the same time 
this Monitor does not effect version performance.     
 
14. CONCLUDING REMARKS 
 The SDE PW is implemented in its basic input 
language, the Dijkstra. The size of the source text is nearly 
40,000 lines. Lower level communication and I/O 
subroutines are implemented in Assembly. SDE PW is an 
open system and is being extended permanently by adding 
new advanced tools. The system has been widely used for 
support of development of large-scale artificial intelligence 
research projects in several research institutions [9, 10, 13]. 
The applications designed, investigated, repeatedly 
redesigned, and maintained with PW support varied from 
1,000 lines of source text to 70,000. The size of software 
research teams supported varied from one person to 16. 
Number of versions approached 120. Large numbers of 
applications and team size do not necessarily correspond to 
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the upper limits of PW applicability. The experience of 
supported projects did not show these limits yet. Probably, 
for software teams of 100 members and more, it would be 

necessary to have a specific version control subsystem, 
e.g., implemented on DBMS, in order to manage groups of 
versions and their interactions. 

 Calls trace 
source texts

                   Load Module 
(execution is suspended or interrupted)

Subroutines 
source texts

data conversion 
and comparison

   data 
structure

registered standard

 
Fig. 11. Debug Monitor: problem-oriented debug subsystem 
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