
This is an extended version of the paper published in the Proc. of the International Symposium on Applied Corporate Computing - ISACC94, pp. 147-156,
Monterrey, Mexico, Oct. 1994.

Software Development Environment for Concurrent Design and Maintenance of
Complex Research Projects

Boris Stilman
Department of Computer Science & Engineering, University of Colorado at Denver

Campus Box 109, Denver, CO 80217-3364
E-mail: bstilman@carbon.cudenver.edu

Abstract—A Software Development Environment called
PROGRAMMERS WORKBENCH (PW) is considered in
this paper. It is intended to support concurrent software
development and maintenance of large-scale research
projects. Such projects usually involve an extended
prototype period for investigation and improvement of the
algorithm on which they are based. This period often
includes even the maintenance phase, i.e., the entire
software life cycle. Thus, each prototype must be extremely
flexible to provide multiple redesigns. The environment
supports concurrent development and multiple
redevelopment iterations. It provides support of individual
software development skills by combining independence of
a software designer acting alone and strict discipline of
cooperative research projects. The PW was implemented
on IBM hardware. It has been used in several research
institutions for the development and maintenance of large-
scale artificial intelligence projects.

1. INTRODUCTION.
 Many software design projects require extreme
flexibility. First, we are concerned with research projects.
Although requirements specifications might be clear and
well defined, the design specifications and the algorithm
are vague, because both of them usually are subjects for
research. Of course, we can not develop software following
a vague algorithm. Thus we have to define the first version
of the algorithm, design the first software prototype,
investigate this prototype and find a way for improvement
of the initial algorithm or even to change it entirely. This
brings us to the second iteration of the design process: we
have to design the second version of the algorithm,
prototype, etc. This model is analogous to the spiral
software engineering model [1] with the following
differences. First, we should not redefine requirements
specifications after each iteration: they are stable. Second,
we should not perform risk analysis, because our purpose is
different. Instead, we have to conduct prototype
investigation to test the ideas on which the algorithm is
based. We have to improve these ideas and implement
them in the new version. Obviously, it could be better to
investigate the algorithm theoretically but for complex
projects it is usually impossible.
 Following this software design model we can start
each new iteration almost from scratch, i.e., from
requirements specifications, and redesign everything.
Unfortunately, it may extend the design process
dramatically and eventually cause the failure of the entire
project. A different approach is to redesign each new
prototype from the previous one. Thus, we have to make

every prototype (and its components) extremely flexible
and in some sense reusable [2]. We need a problem-
oriented building set of reusable building blocks of
different sizes. The harder the skeleton of the old building,
the easier to perform future redesign. Sometimes, very
rarely, even the skeleton should be rebuilt. To support
flexible, changeable prototypes we have to provide a hard
structure for the applications through structured design and
implementation, and what is more important, to keep this
hard structure during the entire software life cycle. This
problem is closely related to the notorious software
maintainability problem that is considered as desperate
problem for all types of software projects (not only for the
research ones) [3].
 The next problem, which complicates our discussion
substantially, is the problem of concurrent development. A
series of flexible prototypes should be designed in a close
cooperation of software research engineers. The question is
how to support the design of a large structured prototype
by a software team. This might be accomplished by
breaking down the design into sub-designs, by the support
of the interaction and control of sub-designers, and, of
course, by providing a strict design discipline. At the same
time, team members often are bright researchers, or even
simply bright software engineers whose creativity skills
would naturally resist this all-embracing cooperation,
control and discipline. How to reveal these natural skills,
how to give individuals the freedom required for revealing
their creativity? We must find a method to direct all their
energies to the benefit of the project instead of the natural
resistance to cooperation and discipline.
 The support of software flexibility, maintainability,
and concurrent development is the key point of our
requirements for the design of a software development
environment. Subordinate to these key points are software
run-time efficiency, portability, software correctness and
reliability.
 Complex research projects usually demand so much of
the hardware that SDE overhead expenses should be
reduced to a minimum. Moreover, the environment should
support the development of applications with the highest
performance parameters.
 The environment itself should be portable, employing
for example the approach of the UNIX designers. The
biggest hardware independent piece should be written in a
higher level popular language, while the rest of the system,
the hardware dependent piece, should use an assembly
language, and would be rewritten in case of porting the
system to new hardware. Obviously, the environment
should support the development of extremely portable

2
 The process of the development of complex software
project might generate tens or even hundreds of different
versions. One of the main purposes of the environment is to
provide the support for the design, cooperation, and control
and design of these versions.

software, because porting to new equipment is the routine
procedure for long-range research projects.
 The environment should support the development of
“correct” and reliable software to give a researcher the
opportunity for investigation of algorithms of all the
intermediate prototypes, avoiding interference of bugs as
much as possible.

 Here, we would like to emphasize that usually a typical
version does not represent the entire project. At best, it is a
rough draft only. Some of these versions, the designated
versions, do represent it. This row of designated versions
corresponds to the row of prototypes of our model.

 There are many different software environments [4, 5];
they have some advantages and disadvantages, and
research in this field is the hot point of software
engineering. In order to meet precisely the requirements
presented above we have designed a new software
development environment (SDE) PROGRAMMERS
WORKBENCH.

 Let us consider the creation of versions at the initial
stage of software design (Fig. 1). We follow the top-down
design model proposed in [6], a structured programming
approach [7] and later proposed methods for the translation
of data flows into design definitions [8]. The pyramid
shown in Fig. 1 represents a design structure chart of the
application to be developed. This is a hierarchical tree of
boxes (modules) with the root (main module). Branches of
this tree are the sequences of modules traced down from
the top, such that each successor is subordinate to the
predecessor. The set of modules (or sections) included into
the top of this structure chart is called a master version.
They represent subordinate sections of the highest level as
well as, probably, some of the most important I/O sections
of our application. This initial master version will be the
common piece and, consequently, must be included into all
the versions to be created.

 The requirements listed above require further
refinement in the form of the software development model.
In this paper we consider such a model (Sections 2-5); then
we present implementation issues.

2.TOP-DOWN DESIGN: VERSION APPROACH
 In order o expedite the development of a software
project we have to break it into parallel processes as early
as possible. This way we can involve team members in
simultaneous work. According to principles considered in
the introduction, we are going to support software
development beginning with the design stage. Thus, we
have to introduce a parallel design model as well as parallel
models for all the rest of development steps:
implementation, testing and debugging, and maintenance.
Our main software development model represents software
development as the design of the sequence of prototypes,
so all these parallel models should be included into the
cycle and, moreover, nested into each other. The key
element of this series of models is the notion of a version.

 Here is the point for the initial break of the design into
sub-designs. We can separate some branches. Each branch
should include its own sections as well as a common piece,
the top sections. Such a branch is called an initial version.
Versions shown in Fig. 1 have a common piece, the master
version. However, it is not a restriction: they might have
some other intersections as well, i.e., different common
sections that are very important to be included into the
group of versions, but not important enough to be included
into the master version.

Master Version

Version 1
Version 2

Version 3

Sections

Application

 Obviously, we can break down our design not only at
the top. Any node (box) of the structure chart tree can be
considered as the break point. New versions to be created
must include the master version, existing versions coming
down into this node (or at least sections of one branch
coming into this node) and one of the branches coming
down from this node. The main reason for the creation of a
new version is to initiate an independent software design
process. When creating a new version we should take into
account the semantics of this future version (as an
independent set of sections) and the possible consequences
of this (even temporary) separation.

3. VERSIONS IMPROVEMENT CYCLE
 As we know the creation of a new version initiates an
independent software development process. This process
includes all the stages of software life cycle: design,
implementation, testing/debugging, and maintenance. Even
after the generation of an intermediate prototype some
versions might continue their life cycle during the
algorithm investigation. During their life cycle, versions
can actively interact to each other. Next, we will consider
different types of mutual interactions between versions and

Fig. 1. Top-down design: initial versions
 A version is an independent software unit containing
design specifications (architectural and procedural),
implementation information (source and object codes),
testing/debugging information, specific debugging
problem-oriented tools, and control information. A version
is intended for the personal development by a software
team member.

3
 MACROOPERATIONS the outer environment.
 Along version improvement many other operations
with versions are required to support cooperation and
control of independent development processes. Here, we
will consider macrooperations because they can be defined
in terms of the whole versions without consideration of
version inner structure. These macrooperations are
intended to support close cooperation and control of
software designers through automatic support of various
interactions between versions (Fig. 3).

 While the creation of new versions happens rarely
during software process, more often we have to include one
of the existing versions into all other versions. Assume that
at some stage of software development 9 different versions
have been created (Fig. 2). Versions A1, A2, A3 were at
the disposal of the designer A, versions B1, B2, B3 and C1,
C2, C3 — at the disposal of the designers B and C,
respectively. All the versions include the common piece,
the master version. Subsequent development was
conducted independently by each designer. It could happen
that one of the versions, e.g., version A1, has “matured”
enough to be designated a new master version. For
example, version A1 has been fully designed, implemented
and even tested and debugged. In this case it is feasible to
make this designation and include this new master version
into all the rest of the existing versions.

merge

inclusion
+

+

equalization
+

purge

destruction

creation empty
version

+

break
+

difference
+

 Master Version

New Master Version

 A B C

A1

A2

A3
B1

B2

B3 C1
C2

C3

A B CDesigners:

Designers:

Fig. 3. Versions interaction: macrooperations
 The first operation is called a creation. It takes place
when we have to generate the empty version. This empty
version does not include any application design sections
but it has something, which is called a kernel. The kernel is
a software unit that is included into every version. Its
purpose is to support interaction of this version with the
software development environment, to support all the
operations, and actually to turn a set of design sections into
the version. The kernel itself is invisible for a software
designer, but after creation, the version, although empty,
becomes “visible as independent object represented by
name” in different lists generated by the environment.

Fig. 2. Versions development cycle
 The purpose of this inclusion is to bring our versions
closer to the complete future prototype, to reduce missing
pieces (which were substituted by stubs). Obviously, this
version improvement should be done as soon as possible.
This procedure is depicted in Fig. 2: version A1 is
designated a new master version and included in all the
versions of designers A, B, C. This procedure is called a
version improvement cycle.
 To avoid misunderstandings, we have to distinguish
this version improvement cycle from the main development
cycle resulting in the new prototype after each iteration.
Each iteration of this main cycle includes multiple
iterations of the version improvement cycle; the final
version improvement creates the next prototype.

 The next operation, called a destruction, is very
simple. The version considered as an object, which
concluded its task, must be destroyed. The version that is
subject for destruction is shown in Fig. 3 as a union of two
figures, an ellipse and a circle. The circle represents the
master version.
 The operation called inclusion can be explained as 4. VERSIONS INTERACTION:

4
 MICROOPERATIONS follows. During the independent development of a version

(see left argument in Fig. 3) some sections were designed,
implemented and tested, while the entire version is not
ready yet to substitute for the new master version. These
sections are shown in Fig. 3 as black circles. In this case a
manager can make a decision about inclusion of the
finished piece (black circle) into other versions (right
argument).

 The following operations are actually routine software
development procedures but here they appear in the new
framework of version development. They are called
microoperations, because they require to interfere into the
inner structure of a version or display some details of this
structure. Microoperations are broken into three modes:
design mode, execution mode and debug mode (Fig. 4).

version 1

version 2

Archive

edit

update

version 3

copy

copy

version
object code
(loaded)

version
 object code

(loaded)

data
output

source text
output

complex data
 conversion

debug
mode

design
mode

version 3

version tables
output

run & I/O
support execution

mode

 Sometimes independent development of some versions
can not continue any longer. For example, comprehensive
testing of one of the versions requires the development of
complicated stubs to substitute for the sections of the other
version. A different situation is as follows: independent
development showed that separation of this version was
unreasonable because the semantics of a separated piece
was not well defined. In all such cases we have to merge
this version with some other existing ones. Operation
merge is shown in Fig. 3. Of course, the master version
component will not be duplicated in the result of this
operation. It is shown as one small circle in Fig. 3. The
same operation is used for inclusion of the new master
version into all other versions during the version
improvement cycle.
 After active development, a version might be left
unchanged, actually preserved, for future reference, while
its copy will stay under development. This way the
preserved version will grow old: some sections will no
longer be up to date. They will be changed in the active
copy. That is why we need an operation of equalization of
two versions. After this operation both versions will
become identical by substituting aged sections for the
updated copies (black circle in Fig. 3). Fig. 4. Version development: microoperations
 The operation of purge is intended to purge some
sections (black circle) from a version. These sections
proved their unsoundness in different versions and earlier
were deleted from them. When it is decided to purge all the
unsound sections from the rest of versions, it can be
accomplished by the purge operation.

 In the design mode a developer updates his version. He
designs new sections of the structure chart, updates this
chart, develops detailed design of sections, e.g., in
pseudocode and in English, updates this design, develops
sections source texts and updates them. First, he employs
requirements specifications, draft pieces of design,
pseudocode and source texts, which are kept in the SDE
Archive (Fig. 4). Second, a developer can use existing
versions as a valuable source of draft designs and source
texts (see versions 1, 2, 3 in Fig.4). All this information can
be copied into the developer’s work file for joint editing.
Small white circles in Fig. 4 represent sections. After
editing, the contents of sections and their number have
been changed. Four sections shown in Fig. 4 are combined
into one new section. Now we are prepared to update
version 3. We should keep in mind that a version is a
complex object and can not be updated instantly, as can be
done with an editor’s work file on screen. Thus, version
update requires a specific microoperation update. As a
result of this, the prepared designs or source texts will be
“compiled” into the version. For example, if source text of
a section was edited and sent for a version update then the
following changes will be accomplished. The SDE will
update source text, object code, storage allocation and
cross reference tables, debug options, and version control
information.

 At some stage of the version development it may
become apparent that this version should be broken into
two different versions. It might happen when a designer
decides that the current version is “overloaded” (got too
big) and further development, e.g., testing, can not continue
properly without a break. With the list of sections to be
separated as an input, the operation break creates two new
versions.
 To keep track of the development of different versions
and control cooperation of the designers, we have to
compare versions in pairs to find a difference, a list of
sections that are included in the first version and not
included in the second. The operation difference performs
this duty. The result of this operation is often used as an
input for other operations, e.g., for the break.
 The macrooperations considered above support
interaction between versions, and in this way, cooperation
of software developers. Below we consider
microoperations, which support the development of each
version in a version life cycle.
 Next, we are going to discuss an execution mode (Fig.

4). In this mode a version can be executed and tested as an 5. VERSION DEVELOPMENT:

5
 PW communicates with OS interactively emulating an
operator console. OS files generated by versions during the
execution (or other files) are accessible through PW Editor
for screening in the design mode. Their update is permitted
in the execution mode only. Communication with the
standard IBM CICS Users Archive is fully interactive:
CICS modules can be copied into the Editor’s work file,
updated and then reloaded into the CICS Archive.

executable unit. Every design section represented in the
version by stub or source code is represented by object
code as well. This code is generated by the SDE
automatically. Thus, every section is executable, and the
entire version can demonstrate the performance, which is
close to the performance of the future prototype. (This
closeness depends on the closeness of this version to the
prototype.) The kernel of the version under SDE control
should support multi-channel version I/O and allocation of
physical terminals to the specified channels (I/O switches).
It also provides run-time infinite loop protection, registers
exceptional situations (e.g., errors), catches interrupts and,
in this case, switches the version into debug mode.

P

OSOS Files Archive CICS Users Archiv

PW Archive PW Versions Library

PW Run-Time Monitor

PW Debug
 Monitor

interactive
 readinginteractive

interactive

interactive
reading

interactive
command

mode

 version update
(off-line operation)

design mode

 debug
mode

running
versions

execution
mode

PW Editor

PW inner
 objects

Fig. 5. Structure and communications of PROGRAMMERS
WORKBENCH

 The debug mode is intended to support detailed
investigation of the version, looking for a source of
exceptional situation registered at the execution mode. In
this mode the execution is suspended or interrupted. In
response to the developer’s request SDE is able to display
current trace of section calls, values of all the variables,
data structures, current state of version files, all the source
texts, cross reference tables (e.g., lists of subordinate and
superordinate sections). In this mode a developer can also
start a problem-oriented debugging subsystem to convert
complex data to the higher level representation or generate
standard “correct” data with automatic comparison with the
registered values (Section 13).
 In a short description of macro- and microoperations
we outlined the basic principles of a software environment
for cooperative design. In the following sections we will
consider some details of implementation of these principles
in the form of the SDE PROGRAMMERS WORKBENCH
(PW). Early versions of this SDE are considered in [9, 10].

6. STRUCTURE OF PROGRAMMERS
 WORKBENCH
SDE consists of the following tools (Fig. 5):
— PW Monitor, an interactive subsystem which controls

all other tools and communications with outer objects;
— PW Editor, a multi-user multi-window screen editor,

which supports all the microoperations in design
mode. It communicates with PW inner objects PW
Librarian and PW Archive as well as with outer
system software: Operating System (OS), OS Files
Archive, and CICS Users Archive (Fig. 5);

 Basically, inner PW communications support macro-
and microoperations with versions. Macrooperations are
complex and require a lot of processing. So, they are
implemented in the off-line mode, while microoperations
(except one) are fully interactive. The only exception is
version update microoperation after source text editing. It
is performed by PW Librarian in the off-line mode.

— PW Archive of design and source text drafts, that are
currently under development. It also contains source
texts and object code of all the PW tools;

— PW Librarian, a subsystem for automatic support of all
the macrooperations utilizing the version update
microoperation. This subsystem manages the library of
versions;

7. WORK PROCEDURES IN
 PW ENVIRONMENT
 These procedures are depicted in Fig. 6. The design
and implementation stages of the software development
process are represented by the upper loop. Working with
PW Editor a developer performs initial and detailed design
of his version. A developer saves drafts of his design
temporarily in PW Archive. The beginning of a version’s
own life cycle is as follows. After preparing the initial
version as a set of pseudocode sections, stubs and section
descriptions in English, a designer creates a version as a
unit to be managed by SDE. This version update job being

— PW Run-Time Monitor, a subsystem that supports
microoperations in the execution mode;

— PW Debug Monitor, a subsystem that supports
microoperations in the debug mode.

 The PROGRAMMERS WORKBENCH is an
integrated software development environment implemented
with IBM hardware and software. Communications
between SDE subsystems and with outer objects are shown
in Fig. 5.

6
started by Editor’s command, collects all the necessary
source pieces from Editor’s work file, Archive, from
existing versions, combines all components, and creates
new version or updates an existing one in the off-line
mode. Now the designs and texts are present in the updated
version; they form a structure that is available for the PW
Editor for screening and further update. (The drafts saved
temporarily in the Archive now must be deleted.) The
subsequent design consists of repetitions of this loop.

Editor

off-line

copy source
texts from
different versions

save temporarily

copy

start version update job

job retrieves the
 entire version

updated version
 return

switch switch

PW Run-time I/O
 support

program
 I/O

program
 I/O

PW Archive

PW Versions
 version
execution

 interaction
with version
 in debug
 mode

 PW
debug
mode

under PW Librarian control

Fig. 6. Work procedures in PW environment
 The implementation stage employs the same
procedures. The only difference, practically invisible to the
designer, is the execution of version update operation. SDE
generates (or updates) object code, storage allocation and
cross-reference tables, and checks syntactic structure of the
entire version.
 The subsequent testing and debugging steps are
presented at the bottom in Fig. 6. In the execution mode
running versions under control of the Run-Time Monitor
can allocate different terminals for I/O, switch from one
terminal to the other (from one channel to the other), or
even to a dummy terminal, i.e., continue execution without
output. After registration of an exceptional situation, SDE
passes control to the Debug Monitor. It will support a
debug session on the same terminal or can switch to a
different one. All the information about the interrupted (or
suspended) version is available for the designer in this
mode: source texts, cross-reference storage allocation
tables, and values of data structures. We will consider some
details of these modes in Sections 12 and 13. Testing and
debugging result in a version update, i.e., we return to the
upper loop procedures (Fig. 6).
 The SDE PW supports concurrent design providing
full support of versions macrooperations. Their

implementation is based on the version update
microoperation (Fig.4). The PW Librarian prepares source
texts (designs, descriptions in English) of the sections to be
updated. A list of these sections is usually the input
information for the Librarian. Sometimes the Librarian
itself can generate this information, e.g., comparing two
versions and computing the difference, the list of different
sections (Fig. 3); then it can use this difference for the
version update. The update itself is performed by deleting
sections to be destroyed, by generating object code for the
new sections or for the sections to be substituted, by
linking all the sections and recomputing the tables.
 The approach to software development supported by
SDE PW does not require a completion of a current
development step before the beginning of the next one. For
example, in order to begin testing we do not have to finish
implementation of the entire version. An unimplemented
piece will be represented by stubs and pseudocode. It
means that we can have a “version prototype” at the initial
steps of the design. The following development of this
prototype will result in a cyclic repetition of steps: design –
implementation – testing – debugging – design. In software
development practice in general we always have this loop,
but usually it is poorly supported. This loop is essential at
the maintenance stage of the software life cycle. Thus, SDE
supports maintenance long before the completion of the
development: the entire software life cycle is considered as
a maintenance process.

8. VERSION STRUCTURE
 A version is implemented as a partitioned data set
regarding to IBM OS MVS(SVS). Each version consists of
the partitions of the following five types: object code (load
module), sections documentation (pseudocode, descriptions
in English), sections source texts on Dijkstra language [7,
9, 13], Fortran, Assembly, sections reference table and
storage allocation map, version index (Fig.7).

Object
Code

Sections documentation: pseudocode,
descriptions in English (compressed)

Version Index.
Sections reference table and storage allocation map

Each section is represented by the following information
Section
name

Creation
date

Last
source
update
date

Compiler
type

Debug
statements
(hidden)

Last
documentation

update date

Debug
section
(flag)

Sections source texts: Dijkstra, Fortran, Assembly
(compressed)

Fig. 7. Version structure (simplified)

7
 Every subroutine of the application corresponds to one
section of the version, i.e., to one partition of
documentation and to one partition of source texts. Here,
subroutine means an arbitrary piece of text with the
following first and last lines: the first line contains the
word SUBROUTINE and the name coming next, the last
line contains the word END. Thus, all the subroutines in
Fortran (or Dijkstra) are separate sections as well as pieces
of the text singled out intentionally, e.g., functions in
Fortran, Assembly subprograms, and descriptions in
English. Every section has its own unique name, a name of
the subroutine. Sections with source texts and
documentation are compressed.
 The structure of the Version Index is shown in Fig. 7.
Let us consider some details. Creation date means the date
when this section was included into this version. Compiler
type contains a symbol corresponding to the compiler
which was used for generating object code of this section.
It might be an optimizing or debugging Fortran compiler,
or Assembler. Next Index item indicates the presence of
instructions generated by source statements DEBUG in the
section object code. Last Index item contains an indicator
that this section is a debugging one (see Section 11).
 This version structure allows implementation of all the
macro- and microoperations considered above. For
example, if we have to equalize two versions, the Librarian
can find in the leading version all the sections updated later
than the specified date. After that, it will collect their
source texts (documentation) and update the aged version.
Another example: in order to report about aged
documentation, the Librarian can search Index and find all
the sections where last source update date is greater than
last documentation update date. Employing PW Editor we
can copy Index, any source texts or documentation from
the version into work files. It allows us to edit
simultaneously two or more texts copied from different
versions in different windows, then combine these texts
and send a command to start version update job.
 Next we consider an implementation of the version
update operation, which is the major component of all the
macrooperations.

9. VERSION UPDATE OPERATION
 This operation can be initiated by the designer typing
the PW Editor command or automatically by the Librarian
itself as part of a macrooperation. For simplicity we will
consider this operation without documentation update and
without Assembly sections.
 A typical version update operation has three input lists
(Fig. 8). The first one consists of the names of sections to
be updated in the version (or new sections). The second list
(possibly empty) consists of the names of sections for
DEBUG statements insertion. Each insertion is
accompanied by the indication of specific type of these
statements and activating conditions. The third list shown
in Fig.8 between first and second lists is the list of source
texts in Dijkstra or Fortran. All these lists were previously
updated by the PW Editor or passed by Librarian from the
previous steps of a macrooperation.
 The next step procedure, CHOOSER, selects from the

third list source texts according to the names from the first
and second lists. CHOOSER inserts run-time parameters
check statements into all the sections selected. Conditional
and unconditional DEBUG statements are inserted into the
sections from the second list. No statements inserted above
will stay in the version source texts. However, the version
object code will be updated and the version Index will have
a pointer, which indicates the presence of instructions
generated by DEBUG source statements in the section
object code.

Names of sections
 to be updated

Sourse texts
 Names of sections for

DEBUG statements
insertion

 CHOOSER
 selects texts and inserts
 DEBUG and parameters
check statements into these texts

FORTRAN EXTENDER

FORTRAN COMPILER
 of type wanted

 (automatic call)

 LINK EDITOR Version to
 be updated

 REGISTER
updates version tables and

 Index

 UPDATER
 updates sourse texts and
 version object code

 generates Fortran code

 generates object code

for each
 section

(cond. and uncond.)

Fig. 8. Version update operation
 Source texts prepared in this way are passed to the
FORTRAN EXTENDER. Basically, this procedure is the
implementation of the preprocessor from the Dijkstra
language to Fortran. It generates pure Fortran code and
passes control to the IBM FORTRAN COMPILER. The
type of compiler to be called (debugging or optimizing) is
predetermined by the presence (or absence) of DEBUG
statements in the current section. In case of the absence of
DEBUG statements, only the optimizing compiler (with the
highest level optimization mode) is used. Storage allocation
tables are passed to the subsequent steps.
 Object code sections generated by the compiler come
into the IBM LINK EDITOR. This editor retrieves the
version, i.e., partitioned file, to be updated. Then it inputs
version object code (load module), and updates it. New
load module and cross-reference tables generated are
passed to the next procedure.

8
 Having received storage allocation and cross-reference
tables, the procedure REGISTER updates version tables
and Index.
 Next, procedure UPDATER updates section’s source
texts and object code. UPDATER compresses source texts
received from the early steps and generates new sections
(new partitions of the partitioned file). As usual for IBM
OS partitioned data sets, new partitions are added to the
end of the data set, while old partitions with the same
names are destroyed. Before adding new partitions to the
version, the Librarian checks the room in the data set for
this operation and compresses this partitioned data set if
necessary.

10. DOCUMENT UPDATE SERVICE
 In order to meet the requirements of flexibility,
reusability of some sections, maintainability and
coordination of concurrent design stated in the introduction
to this paper we have to keep a strict correspondence
between all the version components. From Section 9 we
can see that correspondence between source texts, object
code, version tables and version Index is supported
automatically. A manual source text update (after editing)
can be saved in a version only through a general version
update. Thus, by updating all the version components the
Librarian keeps mutual correspondence between them. The
problem is substantially harder for documentation update.

 Sourse
and object

Documents

Version A

Version B

Documents

 Sourse
and object

WEEKEND

Librarian

Fig. 9. PW document update service

 We allow informal (but readable) documentation, e.g.,
pseudocode, descriptions in English; so its analysis and
update are hard to accomplish automatically. To do that we
would require an expert system with natural language
analyzer, which was beyond the scope of this project. Thus,
at this point we have to rely on a software designer: he
must update documentation himself. While software
development steps run successively, i.e., requirements
analysis, design, implementation, etc., the documentation
designed at each step is up to date. But after the first
change at the implementation, testing or maintenance step
and, especially, during algorithm investigation, we face a

problem. It is hard to force the designer to update
documentation before the source text update, especially if
this change is only experimental and probably in a few
minutes will be replaced by a new change or even by the
return to the previous text. So we allow a temporary
disparity of documentation and other version components,
say, during a week. It should be a period while a designer
can easily recreate the ideas which motivated him to make
the change and reflect these ideas in documentation.
However, no grace period is allowed after the deadline: a
disordered version must be updated or suspended, i.e., SDE
must make this version inaccessible for the following
design (until documentation is updated).
 The PW documentation update service is shown in
Fig. 9. At the end of each week the Librarian scans all the
versions checking sections with aged documentation. It
scans version Index and compares last source and
documentation update dates (Fig. 7). Disordered sections
are printed out and handed to the designers. Then Librarian
gives designers a grace period to accomplish update. After
the deadline unupdated versions will be suspended.

11. FORTRAN EXTENDER
 E. Dijkstra [11] developed an approach to software
development based on the simultaneous program design
and correctness proof. One of the most important features
of this approach is the use of the language constructions
whose semantics can be described formally in terms of
predicate converters. The SDE Librarian includes
FORTRAN EXTENDER (Fig. 8) based on Dijkstra control
constructions [11]. This way we achieved a combination of
understandable and readable source texts structure with the
efficiency typical for Fortran compilers.
 The Extender input language is an extension of
Fortran. It includes Dijkstra constructions IF and DO. The
syntax of the input language is as follows (assuming
Fortran terms are known):
 <program>::= [<subroutine name>] {<description

statement>} {<executable statement> | <format
statement>} <END statement>

 <executable statement>::= <executable Fortran
statement> | <IF statement> | <DO statement> | SKIP |
ABEND

 <IF statement>::= IF<list of protected statements>FI
 <DO statement>::= DO <list of protected statements>OD
 <list of protected statements>::= <protected statement>

{¤ <protected statement>}
 <protected statement>::= <protector> {<executable

statement> <format statement>
 <protector>::= <simple protector> | <simple protector>

{CAND<simple protector>} |
 <simple protector> {COR<simple protector>}
 <simple protector>::= <Fortran Boolean expression> —>

| ELSE —>
 Fortran statements are written according standard
Fortran rules. Simple protector is written in one or more
lines. The continuation of the line is indicated according to
Fortran rules. Extender’s key words IF, FI, DO, OD, ¤,
CAND, COR, SKIP, ABEND are written in a separate line
each.

9
 Basically the semantics of control constructions
corresponds to [11, 12] and can be briefly described as
follows.
 Execution of the protected statement consists of the
execution of its executable statements. It is allowed if the
protector of this protected statement is true. Execution of
the list of protected statements consists either in execution
of one of the protected statements with true protector
(which one of them is not defined) and output of the signal
“success”, or output of the signal “failure” if all the
protectors are false.
 Execution of IF statement takes place as follows: first,
list of protected statements, enclosed with brackets IF FI, is
executed, then if “success” is signaled a control is passed to
the next statement after FI, if the signal is “failure” then
program execution is interrupted. Execution of DO
statement also consists of the execution of the list of
protected statements, then in case of “failure” signal,
control is passed to the next statement after DO, in case of
“success” the execution of the list of protected statements
is repeated.
 More detailed description of the input language is
beyond the scope of this paper. To clarify our formal
discussion of this language we will consider a sample
program VISIT (Table I) for visiting all the nodes of the
tree represented by three arrays SON, BROTH, FATHER.
In each node program VISIT calls subroutine DOWN on
descent and UP on ascent. In order to understand this
program we have be familiar with the couple of procedures
built into the input language. They are subroutine MOVE
which writes character string into LOGICAL array, and
Boolean function EQ which compares values of such array
(left parameter) with character string and yields TRUE if
they coincide.
 PROGRAM VISIT
 IMPLICIT INTEGER*2 (A–Z)
 COMMON /TREE/ SON(100), BROTH(100), FATHER(100)
 LOGICAL DIR(6)
 I=1
 CALL MOVE(”PASS”, DIR, 4)
 IF (SON(I).NE.0) CALL MOVE(”DOWN”, DIR, 4)
 NEXT=SON(I)
 DO
 EQ(DIR,”DOWN”, 4) —>

 Some situations are under special control of the Run-
Time Monitor. One of them may happen when array
indices exceed array bounds. Another situation may happen
in case of disparity of formal and actual parameters of
subroutines. SDE has static and run-time parameters check
tools. While the static tool checks the correspondence of
parameters in the design mode and during macrooperations,
the dynamic tool conducts this check in the execution mode
under Run-Time Monitor control. According to Fortran
rules this situation is not necessarily erroneous. Thus, being
turned on, this tool suspends the execution, displays
inconsistent parameters and requests the designer’s
permission to resume execution or to pass control to the
Debug Monitor. It should be noted that in order to reduce
possible performance degradation, all these checks can be
executed very scrupulously and activated only for small
pieces of version code. Nevertheless, even activation of
parameters check for the entire version does not cause
significant delays: it is implemented so efficiently that each
subroutine check takes only as much time as the subroutine
“call” itself.

 I=NEXT
 CALL DOWN(I)
 NEXT=SON(I)
 IF (NEXT.EQ.0) CALL MOVE(”BRANCH”, DIR, 6)
 ¤
 EQ(DIR,”UP”, 2) —>
 I=FATHER(I)
 CALL UP(I)
 CALL MOVE(“BRANCH”, DIR, 6)
 ¤
 EQ(DIR, “BRANCH”, 6) —>
 IF
 BROTH(I).NE.0 —>
 NEXT=BROTH(I)
 CALL MOVE(“DOWN”, DIR, 4)
 ¤
 BROTH(I).EQ.0 .AND. FATHER(I).NE.0 —>
 CALL MOVE(“UP”, DIR, 2)
 ¤
 ELSE —>
 SKIP
 FI
 OD

 END
 Table I. A sample program on Dijkstra, a FORTRAN

EXTENDER input language
 The FORTRAN EXTENDER supports two additional
Fortran extensions which are very important for the design
of efficient software: dynamic storage allocation and
recursion. The dynamic storage allocation subsystem
consists of the set of built-in subroutines. The subsystem is
flexible enough to allow application of different algorithms
of storage allocation and deallocation. Our experience
showed that use of dynamic storage effected applications’
performance insignificantly.
 The FORTRAN EXTENDER program is written in its
own input language (with few Assembly routines). Its
source text occupies about 1,000 lines, while object code
requires about 70K byte.

12. EXECUTION MODE
 In this mode, versions run under control of PW Run-
Time Monitor. Excluding I/O support and switches from
one terminal to the other, this Monitor registers exceptional
situations during the execution of a version and intercepts
an interrupt caused by this situation. We will consider some
examples of exceptional situations.
 Usually, such situations are caused by run-time errors,
e.g., a data overflow, an attempt to update a protected
storage location and so on. In all these cases the Run-Time
Monitor intercepts an interrupt, processes it and passes
control to the Debug Monitor to initiate a debug session for
localization of the error.

 One of the very important situations that can be sensed
by the Run-Time Monitor is an infinite loop. It is necessary
to protect CPU intensive programs from this error without
claiming a low CPU time limit, because they can easily
exceed this limit during an error-free run but execution will
be erroneously canceled. It is especially important for
unattended overnight runs or runs without on-screen
output.
 The main idea of the infinite loop protection is as

10
follows (Fig. 10). Consider a program execution as running
through labyrinth of subroutines (or even statements). We
can approximately trace this path. After a few runs we can
do it more precisely. Let us place “alarm clocks” in
different points of this path and assume that all of them are
“electrically wired and synchronized”.

Current run-time
 trace

Subroutines

Fig. 10. Run-Time Monitor: infinite loop protection
Imagine that we can approximately evaluate CPU time
necessary for the program to come from one clock to the
next one. We need only the upper bound of this time and
after a few runs we usually can do it easily. Now set up the
first clock on a time interval, that is deliberately greater
than the time required to reach the next clock. Imagine that
during the execution, the program reached the next clock in
time, i.e., before expiration of the limiting CPU time
interval. Then we will “turn off the clock” to prevent
ringing and reset this clock on a new time interval required
to reach the next clock, and so on. Now assume that the
program did not reach the next clock in time. The clock
will “ring” and the program will be interrupted. It is very
likely that the program delay was caused by an infinite loop
along the path between the clocks (Fig. 10). Thus, the
interrupt is justified.
 The idea considered above is implemented in the Run-
Time Monitor. For this purpose every version, in its kernel,
has two subroutines. One of them allows setting the CPU
timer to a certain time interval, the second intercepts and
processes CPU timer interrupts. Interrupt processing is
performed as follows: if the value of a logical variable
BELL is “true”, then control is passed to the Debug
Monitor, otherwise “true” is assigned to BELL, the CPU
timer is reset to a new time interval and execution resumes.
Thus, variable BELL located in COMMON /BELL/ BELL
and, thus, being available everywhere, serves as a signal
for two-way connection between the version and the
subroutine for interrupt processing. During each time
interval a version must “turn off the clock” at least once,
i.e., assign “false” to BELL, otherwise the clock will
“ring”, and the version will be interrupted. Subroutine
DSPTIM is intended to perform this duty as well as to
output and renew on screen a current version performance
report and to accept input of user’s commands. Placing the
statement:

IF (BELL) CALL DSPTIM
at certain check points in the source text allows us to detect
an infinite loop and interrupt version execution if this

version does not reach the next check point in time.

13. DEBUG MODE
 Debug Monitor work procedures were considered in
Sections 5 and 7. This Monitor receives control from the
Run-Time Monitor if an exceptional situation is detected.
Besides that, the control can be passed to the Debug
Monitor at the check points predetermined by the designer.
These points can be set up explicitly in the source text.
They might be unconditional or have a condition in order
to detect a run-time error. For example, we can explicitly
check if array subscripts do not exceed array bounds.
Moreover, we can link a check point with certain CPU
timer readings and conduct checks only at specific time
intervals.
 Having received control, the Debug Monitor is able to
display different kinds of information about the version
including a current trace of subroutine calls, any program
data and source texts. Let us consider a problem-oriented
debugging subsystem, which considerably extends
Monitor’s means of output and analysis of the information
about current version state (Fig. 11). This subsystem allows
a designer to write special debugging subroutines while
preparing for testing and debugging. These subroutines can
be activated by the Debug Monitor during the debug
session. They might have parameters to be substituted by
these version’s data structures or variables. This is
performed by the Debug Monitor in a process of interaction
with the designer just before starting debugging subroutine.
It means the subroutine will process the current state of
data as captured when the exception occurred. Debugging
subroutines can solve two important tasks. First, they can
convert and visualize version data structures into problem-
oriented patterns (Fig. 11). This allows a designer to easily
observe these structures and consequently easily
understand their correctness (or find an error). Moreover,
debugging subroutines can automatically generate
"standard" (or expected under normal circumstances)
values of these data, compare them with registered values
and output diagnostics.
 Actually, the Debug Monitor supports debugging in
terms of the source text language, and even, in some sense,
in terms of the problem being considered. At the same time
this Monitor does not effect version performance.

14. CONCLUDING REMARKS
 The SDE PW is implemented in its basic input
language, the Dijkstra. The size of the source text is nearly
40,000 lines. Lower level communication and I/O
subroutines are implemented in Assembly. SDE PW is an
open system and is being extended permanently by adding
new advanced tools. The system has been widely used for
support of development of large-scale artificial intelligence
research projects in several research institutions [9, 10, 13].
The applications designed, investigated, repeatedly
redesigned, and maintained with PW support varied from
1,000 lines of source text to 70,000. The size of software
research teams supported varied from one person to 16.
Number of versions approached 120. Large numbers of
applications and team size do not necessarily correspond to

11
the upper limits of PW applicability. The experience of
supported projects did not show these limits yet. Probably,
for software teams of 100 members and more, it would be

necessary to have a specific version control subsystem,
e.g., implemented on DBMS, in order to manage groups of
versions and their interactions.

 Calls trace
source texts

 Load Module
(execution is suspended or interrupted)

Subroutines
source texts

data conversion
and comparison

 data
structure

registered standard

Fig. 11. Debug Monitor: problem-oriented debug subsystem

REFERENCES
[1] B. Boehm, “A Spiral Model for Software

Development and Enhancement,” IEEE Computer,
vol. 21, pp. 61-72, May 1988.

[2] G. Caldiera and V.R. Basili, “Identifying and
Qualifying Reusable Software Components,” IEEE
Computer, vol. 24, pp. 61-70, Feb. 1991.

[3] W.M. Osborne, and E.J. Chikofsky, “Fitting Pieces to
the Maintenance Puzzle,” IEEE Software, pp. 10-11,
Jan. 1990.

[4] Proc. Fourth ACM SIGSOFT Symposium on
Software Development Environments, ACM
SIGSOFT Software Engineering Notes, vol. 15, Dec.
1990.

[5] Special Section. Automating the Software
Development Process: CASE in the 90’s, Comm. of
the ACM, vol.35, pp. 27-89, Apr. 1992.

[6] N. Wirth, “Program Development by Stepwise
Refinement,” Comm. of the ACM, vol. 14, pp. 221-
227, Apr. 1971.

[7] O. Dahl, E. Dijkstra, and C. Hoare, Structured
Programming, Academic Press, 1972.

[8] E. Yourdan and L. Constantine, Structured Design,
Prentice-Hall, 1979.

[9] V.R. Mirniy, A.G. Roizner, M.V. Chudakov, B.M.
Stilman, ”An Instrumental System for Support of
Development and Debugging of Large-Scale
Programs on IBM Fortran,” Programming, The
USSR Academy of Sciences, May 1986, pp. 27-38,
[in Russian].

[10] V.R. Mirniy, M.V. Chudakov, B.M. Stilman, “An
Automated Programmers Workbench on Base of
Integrated System of Program Versions,” in Proc. of
Int. Seminar on Software Engineering, Moscow,
1988, pp. 59-65, [in Russian].

[11] E.W. Dijkstra, A Discipline of Programming,
Prentice-Hall, Englewood Cliffs, N.J.,1976.

[12] D. Gries, The Science of Programming, Springer-
Verlag, 1983.

[13] B. Stilman, “A CASE System for Concurrent
Development,” Dept. of Computer Science & Eng.,
Univ. of Colorado at Denver, Tech. Rep. TR–18, June
1992.

