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Abstract 

Linguistic Geometry is a new method in artificial 
intelligence which it’s utilization causes a 
considerable reduction in the number of branches 
in a search tree. It has proved efficient in solving a 
variety of search problems such as path planning 
for a moving robot. 

One of the short comings of Linguistic Geometry 
appears when the target is surrounded by static 
obstacles, consequently the robot can’t detect any 
path to reach it’s target and stays in initial point. In 
this paper a fuzzy procedure is used to overcome 
this shortage. 

1. Introduction 

The classic approach based on the theory of 
differential games is insufficient for large scale 
systems such as multirobot path planning, 
especially in case of dynamic. This method is 
expand to a discrete-event mode to be implemented 
as a purely interrogative simulation (Rodin, 1988; 
shinar, 1990). This discrediting leads to a finite 
game tree. The nodes of the tree represent the states 
of the game, where the players can select their 
controls for a given period of time. It is also 
possible that players do not make their decisions 
simultaneously and in this case, the sequential 
mutual movements can be easily distinguished. 
Thus, the branches of the tree are the moves in the 
game space. The pruning of such tree is the basic 
task of heuristic search techniques. Interrogative 
approach to control problems offers much faster 
execution and clearer simulator definition (Lirov et 
al., 1998). For this kind of approach a series of 
hierarchical dynamic multiagent goal-oriented 
systems should be developed and investigated. 

One of the basic ideas is to decrease the dimension 
of the real-word system following the approach of a 
human expert in the field, by breaking the system 
into smaller subsystems. This process of 
decomposition can be applied recursively until we 
end up with a collection of basic subproblems that 
can be treated (in some sense) independently. 

In the beginning of 80’s Botvinik, Stilman, and 
others developed one of the most interesting and 
powerful heuristic hierarchical models. It was 
successfully applied to scheduling, planning, 
control, and computer chess. The hierarchical 
networks were introduced in (Botvinnik, 1984) in 
the form of ideas, plausible discussions, and 
program implementations. This model is 
considered as an ideal case for transferring the 
developed search heuristics to other domains 
employing formal linguistic tools. 

An application of the developed model to a chess 
domain was implemented in full as program 
PIONEER (Botvinnik, 1984). To discover the inner 
properties of human expert heuristic, which is 
successful in a certain class of complex control 
systems, Stilman has developed a formal theory, 
the so called Linguistic Geometry.  

By using this method, there will always be a 
considerable reduction in the number of branches 
of the search tree, this reduction is more observable 
in three dimensional pass planning problems [6,7]. 

For example in typical problems number of 
searches decreases from one billion branches to 56 
only. Before introducing of fuzzy LG method a 
brief review of LG presenting in the following 
sections [1].  
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2. Complex System  

Definition: A Complex System is presented by the 
following eight-tuple [1]: 

><   ,  ,  ,  , }{ ,  ,  , TRSSvONRPX tip  (1) 

where: 
}{ ixX =  is a finite set of points (locations of 

elements); 
}{ ipP =  is a finite set of elements (a union of two 

nonintersecting subsets 1P  and 2P ); 

),( yxRp  is a set of binary relations of reachable in 

X  (x and y ∈ X and p ∈ P) ; Element p can move 
from point x to point y if point y is reachable from x 
, i.e. ),( yxRp  holds. 

xpON =)( , where ON  is a partial function of 
placement from P  into X ; 
v  is a function on P  with positive integer values 
describing the values of elements; 

ti SS  ,  are the descriptions of the initial and target 
states. The Complex System searches the state 
space, which should have initial and target states; 
TR  is a set of operators , ),,( yxpTRANSITION  of 
transitions of the system from one state to another. 

The problem of the optimal operation of the system 
is considered as a search for the optimal sequence 
of transitions leading from the initial state Si to a 
target state St based on certain criteria for 
optimality. 

3. Autonomous Robots as Elements of the 
Complex System  

A robot control model can be represented as a 
Complex System. 
X  represents the operational district [3]; 
P  is the set of robots or autonomous vehicles; 

),( yxRp  represent moving capabilities of different 

robots; 
xpON =)(  if robot p is at point x; 

)( pv  is the weighting value of robot p; 

iS  is a set of arbitrary initial or starting states; 

tS  is the set of target states; 

),,( yxpTRANSITION  represents movement of 
robot p  from x  to y ; if there is a robot on point 

y , it must be removed before movement of robot 
p  from point x  to point y . 

4. Distance Between Elements 

Definition: A MAP of the set X  with respect to 
point x and element p for the Complex System is 
the mapping [2]:  

+→ ZXMAP px :,  (2) 

(where PpXx ∈∈ ,  and +Z  is the set of all     
non-negative integer numbers ).  
MAP is constructed as follows: 
Consider a family of reachable areas from the point 
x, i.e. a finite set of the following nonempty subsets 

}{ ,
k

pxM  of X  (as show in figure 1): 
k

pxMk ,:1=  is a set of points m reachable in one 

step from x when Rp(x,m)=Ture; 
k

pxMk ,:1>  is a set of points reachable in k  steps 

and not reachable in 1−k  steps, i.e. points m are 
only reachable from points 1

,
−k
pxM . 

Let: 
kyMAP px =)(, , for y from k

pxM , , denotes the 

number of steps from x to y . 

For other points we have 
xynyMAP px ≠=  if    2)(,    and  

xyyMAP px ==  if    0)(,  (3) 

  

 
Fig 1. Interpretation of the family 

 of reachable areas 
 
 
 
 
 



5. Trajectories  

Definition: A trajectory for an element                  
p  ∈  P with the origin at x  ∈  X  and the 

destination at y  ∈  X )( yx ≠ with a length l is the 
following formal string of symbols a(x) with points 
of X  as parameters: 

)()...()( 10 lxaxaxat =  (4) 

Where yxl =  and each successive point 1+ix  is 

reachable from the previous point ix , i.e. 

),( 1+iip xxR  holds for 1,...,1,0 −= li ; element p 

stands at the point x : XpON =)(  [2]. 

),,( lyxt p  is the set of all trajectories for element p, 

originated at x with destination y and length l. 
Definition: the shortest trajectory t of ),,( lyxt p  is 

the trajectory of minimum length for the given 
origin x, destination y, and element p. 

The above and following Properties of Complex 
System allow us to construct formal grammars for 
generating the shortest trajectories. 

Definition: An admissible trajectory of degree k  is 
the trajectory 0t  which can be divided into k  
shortest trajectories; more precisely there exists a 
subset lkiiixxx kiii k

≤<<< −−
,... , },...,,{ 121121

 such 

that corresponding substrings 
)()...(),...,()...(),()...(

12110 liiii xaxaxaxaxaxa
k −

 are the 

shortest trajectories (as shown in figure 2). 
 

 
 

Fig 2. An interpretation of shortest 
and admissible trajectories 

6. Generating Trajectories 

Consider the following control grammar for the 
Complex System with symmetric relation of 
reachable pR , as summarized in table 1 [2].  

Table 1. summary of Grammar 
of shortest trajectories Gt 

 
L   Q   Kernel, kπ                          nπ        FT      FF 

1    Q1  S(x,y,l)→A(x,y,l)                            two   φ  
2i   Q2  A(x,y,l)→a(x)A(nexti(x,l),y,f(l))     two     3 
3    Q3  A(x,y,l)→a(y)                                φ        φ  
Pred={Q1, Q2, Q3} 
   Q1(x,y,l)=(MAPx,p(y)=l)     (0<l<n) 
   Q2(l)=(l 1≥ ) 
   Q3=T 
(n= X , number of points in X  ) 

f(l)=l-1                          D(f)= }0{+Ζ  

L={1,3} ∪ two , two={ n2,...,2,2 21 }  

where L is a finite set called the set of labels; 
Qi represents the condition of applicability of 
productions (antecedents) 
If Qi=T then FT (a permitted subset of L) is 
reachable in the next step; 
FF is analogous to FT in the case of Q=F. 
Where T is true and F is false 
At the beginning of derivation: 0xx = , 0yy = , 

0ll = , Xx ∈0 , Xy ∈0 , +Ζ∈0l , Pp ∈  

nexti is defined as follows: 
  } (v)MAP(v)MAP , X vv{SUM 0p,yp,x 00

l=+∈=

  }k (v)MAP , X vv{x)(ST p,xk =∈=  

SUM )x(ST x)(STx)(MOVE 011 0
II +−= lll  

IF  
 {}} m , ... , m , m { x)(MOVE r21 ≠=l  

THEN  
 andr   ifor         m) , x (next ii ≤=l  

n irfor        m) , x (next ri ≤<= l  
OTHERWISE  

x )  , x (next i =l  

Theorem: A shortest path from point x to point y 
with the length l0 for an element p on x, 

xpON =)( , exists if and only if the distance 
between these two points is l0: 

00, )(
0

lyMAP px =  (5) 

Where nl 20 < . If the relation pR  is symmetric,   

i.e. for all XyXx ∈∈ , and Pp ∈ , 



),(),( xyRyxR pp = , then all of the shortest 

trajectories ),,( 000 lyxt p  can be generated by the 

grammar Gt [3]. 

In this grammar, MOVEl(x) the intersection of three 
sets SUM, ST1(x) and )( 010

xST ll +− . If the 

intersection of these sets is empty, the moving 
element will remain in position 0x . The following 

example reveals this problem. 

Example:  

A military robot A is at position (1, 1, 1) with its 
target TA at position (8, 2, 2) surrounded by static 
obstacles.  
Figure 3 shows the situations of robot and the 
target in a 888 ××  cubic (grid). The robot can 
move to one of its 26 adjacent points.  
 

 

Fig 3. Initial state of robot and its target 

AMAP ),1 1, ,1(  represents the reachable steps for robot 

A as shown in figures 4, 5.  

Fig 4. AMAP ),1 1, ,1(  (projection to XZ plane) 

left for Y=1 and right for Y=3 

The value of AMAP ),1 1, ,1(  for Y=2 is similar to figure 

4 (left) except in cell (X=1, Z=1) must be 1. 

 

Fig 5. AMAP ),1 1, ,1(  (projection to XZ plane) 

left for Y=4 and right for Y=5 

AMAP ),1 1, ,1(  for Y=6,7,8 is achieved in the same 

manner. 

Note that MAP(8, 2, 2), TA is defined at points, where 

AMAP ),1 1, ,1(  is undefined. 

Hence none of elements of SUM are defined. In this 
case the robot A cannot find any path to the target 
TA and it remains unmovable at point (1, 1, 1). 
Using the following method, the robot tries to 
destroy one of the surrounded obstacles from the 
weakest point for approaching the target. 

7. Fuzzy Algorithm for Destroying One of the 
Surrounding Obstacles 

In the first step, the surrounding obstacles are 
detected. Then SUM, ST1(x) and )( 010

xST ll +−  are 

calculated by the algorithm without considering the 
obstacles. In this way the robot starts to move 
towards the target until it reaches the surrounding 
obstacles. In this step, the fuzzy procedure will be 
used to detect the weakest point to be destroyed. 
Figure 6 shows the flowchart of this procedure. 

Figures 7, 8 and 9 show the AMAP ),1 1, ,1( , 

TA),2 2, ,8(MAP  and SUM, without taking into account 

the surrounding obstacles.  
 



 
Fig 6. Flowchart of destroying procedure 

 
Fig 7. AMAP ),1 1, ,1(  without considering surrounding 

obstacles (projection to XZ plane) 
      Left_top:Y=1                           Right_top:Y=3 
      Left_bottom:Y=4                  Right_bottom:Y=5 
 

 
Fig 8. TA),2 2, ,8(MAP  without considering 

surrounding obstacles (projection to XZ plane) 
      Left_top:Y=1                           Right_top:Y=2 
      Left_bottom:Y=4                  Right_bottom:Y=5 

 
Fig 9. SUM without considering surrounding 

obstacles (projection to XZ plane) 
      Left_top:Y=1                           Right_top:Y=2 
      Left_bottom:Y=3                  Right_bottom:Y=4 

As it is seen, 7 steps are needed to move from point 
A to point TA when the surrounding obstacles are 
not considered. As shown in figure 10 at point     
(1, 1, 1) )1,1,1(177 +−ST = )1,1,1(1ST . The intersection 

of three sets SUM , )1,1,1(177 +−ST , )1,1,1(1ST  is 

shown in figure 11. 

YES 

Move to ),( lxinext  

Move to the position of 
destroyed Obstacle 

1−= ll  

YES 

l=0 

START 

Hold the coordinates of the surrounding obstacles 

Without consider surrounding obstacles, 
calculate ),( lxinext  

NO 

Use fuzzy procedure to 
find the weak point to be 

destroyed 

Is ),( lxinext  a 

surrounding 
obstacle? 

NO 

END 



 
Fig 10. Set of )1,1,1(1ST  (projection to XZ plane) 

      Left:Y=1                           Right:Y=2 

 
Fig 11. Intersection of three sets )1,1,1(1ST , SUM, 

)1,1,1(177 +−ST  (projection to XZ plane) 

     Left:Y=1                           Right:Y=2 

 

Consequently, 
)}2,2,2(),1,2,2(),2,1,2(),1,1,2{()1,1,1(7 =MOVE  

Therefore 

)1,1,2()7),1,1,1(( =next       )2,1,2()7),1,1,1(( =next  

)1,2,2()7),1,1,1(( =next      )2,2,2()7),1,1,1(( =next  

Since the number of different values of next is 
equal to 4, at this step we can branch one of them, 
by applying productions 12 , 22 , 32 , 42  

simultaneously (see table 1). 

Suppose point (2,1,1) is chosen. Now robot is in 
(2,1,1) state. )1,1,2(6MOVE  is determined by using 

the grammar of table 1. The two sets of )1,1,2(1ST  

and )1,1,1()1,1,1( 2167 STST =+−  are shown in figures 

12, 13. 

 
Fig 12. Set )1,1,2(1ST  (projection to XZ plane) 

      Left:Y=1                           Right:Y=2 

 
Fig 13. Set )1,1,1(2ST  (projection to XZ plane) 
      Left:Y=1, Y=2                           Right:Y=3 

The set SUM is fixed and is shown in figure 9. 
Hence, )1,1,2(6MOVE  is the intersection of the sets 

shown in figures 9,12 and 13. Then 
)1,1,3()6),1,1,2(( =next       )2,1,3()6),1,1,2(( =next  
)1,2,3()6),1,1,2(( =next       )2,2,3()6),1,1,2(( =next  

Suppose point (3,2,2) is chosen. And robot moves 
to this point. Continuing the algorithm, a set of 
paths from A to surrounding obstacle will be 
obtained, where one of them 

tA= a(1, 1 ,1)  a(2 , 1, 1)  a(3, 2, 2)  a(4, 2 ,2)       
a(5, 2, 2) 
is shown in figure 14. 

 
Fig 14. Set of paths from A to TA, without taking 

account the surrounding obstacles 

In this step the fuzzy rule base procedure is used to 
choose one of the nine points (6, 1, 1), (6, 2, 1),   



(6, 3, 1), (6, 1, 2), (6, 2, 2), (6, 3, 2), (6, 1, 3),       
(6, 2, 3), (6, 3, 3) towards target TA. 

8. Fuzzy Rule Base 

Fuzzy decision-making is a powerfull procedure for 
decision-making in imprecise environments [8]. In 
this work the destroying ability of the robot is 
related to two main criteria 

a) Self protection of obstacles. 
b) Robustness of the obstacle. 

Table 2 represents the rule bases for these relations, 
where 
VV ≡Veryvery             V ≡Very 
S ≡ slightly                    EXT ≡extremely 

Table 2. Fuzzy rule base 
Self 

Protect 
Robustness 

 
LOWEST 

 
LOW 

 
NLOWN

HIGH 

 
HIGH 

 
HIGHEST 

LOWEST VV 
(EXT_easy) 

S 
(EXT_easy) 

easy S 
(diff) 

VV 
(diff) 

LOW V 
(EXT_easy) 

VV 
(easy) 

S 
(easy) 

diff S 
(EXT_diff) 

NLOWN
HIGH 

 
(EXT_easy) V 

(easy) 
ndif_ 
neasy 

V 
(diff) 

 
(EXT_diff) 

HIGH S 
(EXT_easy) 

easy S 
(diff) 

VV 
(diff) 

V 
(EXT_diff) 

HIGHEST VV 
(easy) 

S 
(easy) 

diff S 
(EXT_diff) 

VV 
(EXT_diff) 

The membership functions for fuzzy values of table 
2 are shown in figure 15. 

 
Fig 15. Membership functions for fuzzy values 

Suppose the current self protection and robustness 
for the mentioned nine points be as presented in 
table 3. 

Table 3. Fuzzy values for self protection and 
robustness of nine points 

),( lxnexti  (6, 1, 1)  (6, 2, 1) (6, 3, 1) 

Self Protect HIGHEST HIGH HIGHEST 

Robustness HIGH LOW LOW 

),( lxnexti  (6, 1, 2) (6, 2, 2) (6, 3, 2) 

Self Protect HIGHEST NLOWNHIGH NLOWNHIGH 

Robustness LOW HIGHEST HIGHEST 

),( lxnexti  (6, 1, 3) (6, 2, 3) (6, 3, 3) 

Self Protect LOW NLOWNHIGH HIGH 

Robustness LOW LOW LOW 

The defuzzified decision values for these points are 
shown in table 4. 

Table 4. Defuzzified decision values for nine points 
next((5,2,2),3) (6, 1, 1) (6, 2, 1) (6,3,1) 
Decision value 0.843 0.25 0.301 
next((5,2,2),3) (6, 1, 2) (6, 2, 2) (6,3,2) 
Decision value 0.301 0.865 0.865 
next((5,2,2),3) (6, 1, 3) (6, 2, 3) (6,3,3) 
Decision value 0.183 0.201 0.25 

Therefore point (6, 1, 3) is destroyed and the robot 
moves through this point toward it’s target. 
The final path from A to TA will be  

tA= a(1, 1 ,1)  a(2 , 1, 1)  a(3, 2, 2)  a(4, 2 ,2)       
a(5, 2, 2)  a(6, 1, 3)  a(7, 1,2)  a(8, 2, 2) 

9. Conclusion 

Linguistic Geometry provides a hierarchy of formal 
languages for logical reasoning on multiagent 
systems. This method is applied for solving 
computationally hard search problems. 
In this paper the fuzzy-Linguistic Geometry is used 
for 3D path planning of a moving robot when the 
robot or the target is surrounded by obstacles. The 
mutual advantages of Linguistic Geometry for 
decreasing the calculation time, and fuzzy theory 
for increasing the capability of the procedure for 
applications in real world, are benefited. 
Two main criteria, Self protect and Robustness, are 
used for decision-making of moving robot to 
choose the appropriate point for penetrating the 
surrounding obstacles. The type and number of 



criteria depends on the type of problem in real 
applications. 
This method may be used in industrial large scale 
and military systems. 

References 

 
[1] B. Stilman, “Managing Search 

Complexity in Linguistic Geometry”, 
IEEE Trans. on Systems, Man, and 
Cybernetics Part B: Cybernetics, Vol. 27, 
No. 6, pp. 978-998, Dec. 1997 

[2] B. Stilman, “Linguistic Geometry Tools: 
 Selected Topics”,Proc. of the IEEE Int  
Conf. on Systems, Man, and Cybernetics, 
 La Jolla , Ca , Oct . 1998 

[3] B. Stilman, “A Linguistic Approach To 
Geometric Reasoning ”, An international 
Journal: Computers & Mathematics with 
Applications, Vol.26, No.7, pp.29-58, 
1993 

[4] B. Stilman, “Network Languages for 
Concurrent Multiagent Systems”, An 
International Journal Computers & 
Mathematics with Applications, Vol. 34, 
No. 1, pp. 103 – 136, 1997 

[5] E. Skhisov, B. Stilman, “No Search 
Approach in Linguistic Geometry: First 
Implementation”, Proc. of the IEEE Int.  
Conf. on Systems, Man, and Cybernetics, 
La Jolla, Ca, Oct. 1998 

[6] B. Stilman, “A Linguistic Geometry for 
Space Applications”, Proc.of the 1994 
Goddard Conf. On Space Application of 
Artificial Intelligence, pp.87 –101, NASA 
Goddard Space Flight Center , Greenbelt 
,MD, USA, May 1994  

[7] B. Stilman, “ Heuristic Networks for 
Space Exploration, Telematics and 
Informatics”, An Int. Journal on 
Telecommunication & Information 
Technology, Vol. 11, NO. 4, pp. 403- 428, 
1994  

[8] Lee, J., Jong-Yih Kuo; Huang, 
W.T.,“Fuzzy Decision Making Through 
Relationships Analysis Between Criteria”, 
IEEE Proceedings of the 1996 Asian pp. 
296 –301 

 


